scholarly journals The impact of beetle-induced conifer death on stand-scale canopy snow interception

2013 ◽  
Vol 44 (4) ◽  
pp. 644-657 ◽  
Author(s):  
Evan T. Pugh ◽  
Eric E. Small

Bark beetles have killed more than 100,000 km2 of pine forest in western North America, causing trees to lose the majority of their canopy material and potentially leading to enhanced subcanopy snow accumulation. Over a 45-day period, we tested this hypothesis by measuring daily snow accumulation in three living and two dead lodgepole pine stands and in three adjacent clearings. The largest clearing was selected as our reference clearing based on previous studies. At maximum pre-melt snow water equivalent (SWE), this clearing had accumulated 50.4-cm SWE, while 45.6-cm SWE accumulated under dead stands and 38.1-cm SWE accumulated under living stands. Dead stand snowpacks were both denser and deeper than those in living stands. We attribute higher subcanopy accumulation under dead stands, compared to living stands, to diminished canopy snow interception and sublimation. Storm-scale canopy interception was also estimated by comparing SWE in forests and clearings before and after storm events. Over 10 storms, dead and living stands intercepted 18 and 41% of snowfall, respectively. The amount of interception increased linearly with storm size in the living stands, but not dead stands. We estimate more than half of snow falling on living stands sublimated, with measurably less sublimation in dead stands.

Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Martin Bartík ◽  
Roman Sitko ◽  
Marek Oreňák ◽  
Juraj Slovik ◽  
Jaroslav Škvarenina

AbstractIn the presented paper we deal with the impact of the mature spruce stand on the accumulation and melting of snow cover at Červenec research area located in the Western Tatras at an elevation of 1420 m a.s.l. The work analyses the data obtained from the monitoring of snow cover during the period 2009–2014 (6 seasons). Since the season 2012/2013 the measurements have been also performed in a dead part of the stand and in a meadow. The results proved significant impact of the spruce stand on hydro-physical characteristics of snow cover — snow water equivalent, snow density, as well as on their change due to the dieback of the stand. The data measured at individual locations (open space in the forest, open meadow area, living and dead forest) were tested with the paired t-test for the significance of average differences. Average snow water equivalent in the living forest, dead forest and meadow was 42%, 47% and 83% of the reference value measured at the open space in the forest, respectively. The process of snow accumulation and melting was fastest at the open space, followed by the dead forest. In the living forest, the processes were the slowest.


2019 ◽  
Vol 28 (10) ◽  
pp. 750 ◽  
Author(s):  
Chris H. S. Williams ◽  
Uldis Silins ◽  
Sheena A. Spencer ◽  
Michael J. Wagner ◽  
Micheal Stone ◽  
...  

Wildfire can exert considerable influence on many watershed processes, including the partitioning of precipitation by forest canopies. Despite general acknowledgement that canopy interception is reduced following wildfire, effects on net rainfall and snow accumulation have not been quantified. The objectives of this study were to document net rainfall and snow water equivalent (SWE) in burned and unburned (reference) forest stands over a 10-year period to characterise the effects of severe wildfire on net precipitation in the Canadian Rocky Mountains. Differences in summer (June–September) rainfall between burned and reference stands suggest that wildfire reduced rainfall interception by 65%, resulting in a 48% increase in net rainfall from 2006 to 2008. This represented an average annual increase in net rainfall of 122mm (36%) for 10 years after the fire. Similarly, a burned stand had 152mm (78%) higher mean annual peak SWE than a paired reference stand. Collectively, burned stands had 274mm (191–344mm; 51%) more mean annual net precipitation for the first decade after fire. These results suggest that increases in net precipitation are likely following wildfire in subalpine forests and that, owing to the slow growth of these forests, post-fire changes may alter precipitation–runoff relationships for many years.


Author(s):  
Haleakala K. ◽  
Gebremichael M. ◽  
Dozier J. ◽  
Lettenmaier D.P.

AbstractSeasonal snow water equivalent (SWE) accumulation in California’s Sierra Nevada is primarily governed by a few orographically enhanced snowstorms. However, as air temperatures gradually rise, resulting in a shift from snow to rain, the governing processes determining SWE accumulation versus ablation become ambiguous. Using a network of 28 snow pillow measurements to represent an elevational and latitudinal gradient across the Sierra Nevada, we identify distributions of critical temperatures and corresponding storm and snowpack properties that describe how SWE accumulation varies across the range at an hourly timescale for water years 2010 through 2019. We also describe antecedent and prevailing conditions governing whether SWE accumulates or ablates during warm storms. Results show that atmospheric moisture regulates a temperature dependence of SWE accumulation. Conditions balancing precipitable water and snow formation requirements produce the most seasonal SWE, which was observed in the (low-elevation) northern and (middle-elevation) central Sierra Nevada. The high southern Sierra Nevada conservatively accumulates SWE with colder, drier air, resulting in less midwinter ablation. These differences explain a tendency for deep, low-density snowpacks to accumulate rather than ablate SWE during warm storms (having median temperatures exceeding 1.0°C), reflecting counteracting liquid storage and internal energy deficits. The storm events themselves in these cases are brief with modest moisture supplies or are otherwise followed immediately by ablation.


2011 ◽  
Vol 281 ◽  
pp. 155-159
Author(s):  
Su Zhen Dang ◽  
Chang Ming Liu

The impact of soot-induced snow albedo on snow accumulation and snowpack ablation was evaluated using an energy and water balance land surface model with a newly modified snow albedo scheme. Model was tested against observed snow water equivalent (SWE) during the water year 2000 and 2002 at Ebbetts Pass site. Results show that when the soot mix ratio is 100 ng/g, the model performance is slightly improved during the snow ablation period, while snow albedo exhibits less variation. A basic sensitivity analysis indicates that snow albedo is sensitive to soot concentration in snow, and SWE is much more sensitive to soot mix ratio during the melting period, indicating the importance of accurately describing soot max ratio within snow for precisely predicting snow accumulation and snowpack ablation processes.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
George Duffy ◽  
Fraser King ◽  
Ralf Bennartz ◽  
Christopher G. Fletcher

CloudSat is often the only measurement of snowfall rate available at high latitudes, making it a valuable tool for understanding snow climatology. The capability of CloudSat to provide information on seasonal and subseasonal time scales, however, has yet to be explored. In this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow water equivalent (SWE) accumulation measurements at various space and time resolutions. An idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates with median percent errors below 50% at spatial scales as small as 2° × 2°. By converting these predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a blend of gridded SWE measurements during frozen time periods. Our predictions are in good agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the two measurements all match predicted values within eight percentage points. We interpret these results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow accumulation over remote regions within seasonal time scales.


2019 ◽  
Vol 13 (11) ◽  
pp. 3045-3059 ◽  
Author(s):  
Nick Rutter ◽  
Melody J. Sandells ◽  
Chris Derksen ◽  
Joshua King ◽  
Peter Toose ◽  
...  

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.


2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

&lt;p&gt;Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake &amp;#214;veruman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km&lt;sup&gt;2&lt;/sup&gt; grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.&lt;/p&gt;


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA183-WA193 ◽  
Author(s):  
W. Steven Holbrook ◽  
Scott N. Miller ◽  
Matthew A. Provart

The water balance in alpine watersheds is dominated by snowmelt, which provides infiltration, recharges aquifers, controls peak runoff, and is responsible for most of the annual water flow downstream. Accurate estimation of snow water equivalent (SWE) is necessary for runoff and flood estimation, but acquiring enough measurements is challenging due to the variability of snow accumulation, ablation, and redistribution at a range of scales in mountainous terrain. We have developed a method for imaging snow stratigraphy and estimating SWE over large distances from a ground-penetrating radar (GPR) system mounted on a snowmobile. We mounted commercial GPR systems (500 and 800 MHz) to the front of the snowmobile to provide maximum mobility and ensure that measurements were taken on pristine snow. Images showed detailed snow stratigraphy down to the ground surface over snow depths up to at least 8 m, enabling the elucidation of snow accumulation and redistribution processes. We estimated snow density (and thus SWE, assuming no liquid water) by measuring radar velocity of the snowpack through migration focusing analysis. Results from the Medicine Bow Mountains of southeast Wyoming showed that estimates of snow density from GPR ([Formula: see text]) were in good agreement with those from coincident snow cores ([Formula: see text]). Using this method, snow thickness, snow density, and SWE can be measured over large areas solely from rapidly acquired common-offset GPR profiles, without the need for common-midpoint acquisition or snow cores.


2016 ◽  
Author(s):  
Jean M. Bergeron ◽  
Mélanie Trudel ◽  
Robert Leconte

Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the Ensemble Kalman Filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British-Columbia, Canada. Synthetic data includes daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than its individual counterparts, offering improvements over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


Sign in / Sign up

Export Citation Format

Share Document