scholarly journals A new hybrid drought-monitoring framework based on nonparametric standardized indicators

2017 ◽  
Vol 49 (1) ◽  
pp. 222-236 ◽  
Author(s):  
Hamid R. Safavi ◽  
Vahid Raghibi ◽  
Omid Mazdiyasni ◽  
Mohammad Mortazavi-Naeini

Abstract A drought is a multi-dimensional event characterized by changes in the atmospheric and land conditions. Hence, monitoring a single drought indicator may be insufficient for water management. The hybrid drought index (HDI) is presented as a nonparametric composite indicator for monitoring multiple components of the hydrologic cycle. The properties of the HDI can be summarized as follows: (1) HDI describes drought indicated from either climatic anomalies or available water (AW); (2) HDI describes the drought onset as early as a decrease appears in climatic variables, while it shows drought persistence until there is no longer a terrestrial deficit; and (3) HDI shows a more severe drought condition when both the climatic water balance and AW exhibit a deficit. HDI is based on the states of potential meteorological water budget and AW. The proposed integrated drought-monitoring is applied to the Zayandehrud River Basin of Iran to show the status of components and depict drought propagation through each one from climate to groundwater. Finally, HDI announces the general status of the hydrologic cycle. A monitoring system established based on HDI would also allow the managers, local businesses, and farmers to identify the status of water supply capacity and water availability.

2021 ◽  
Vol 13 (2) ◽  
pp. 272
Author(s):  
Jong-Suk Kim ◽  
Seo-Yeon Park ◽  
Joo-Heon Lee ◽  
Jie Chen ◽  
Si Chen ◽  
...  

To proactively respond to changes in droughts, technologies are needed to properly diagnose and predict the magnitude of droughts. Drought monitoring using satellite data is essential when local hydrogeological information is not available. The characteristics of meteorological, agricultural, and hydrological droughts can be monitored with an accurate spatial resolution. In this study, a remote sensing-based integrated drought index was extracted from 849 sub-basins in Korea’s five major river basins using multi-sensor collaborative approaches and multivariate dimensional reduction models that were calculated using monthly satellite data from 2001 to 2019. Droughts that occurred in 2001 and 2014, which are representative years of severe drought since the 2000s, were evaluated using the integrated drought index. The Bayesian principal component analysis (BPCA)-based integrated drought index proposed in this study was analyzed to reflect the timing, severity, and evolutionary pattern of meteorological, agricultural, and hydrological droughts, thereby enabling a comprehensive delivery of drought information.


2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


2012 ◽  
Vol 39 (4) ◽  
pp. 332 ◽  
Author(s):  
David A. Ramírez ◽  
Antonio Parra ◽  
Víctor Resco de Dios ◽  
José M. Moreno

Understanding the mechanisms underlying the response of different plant functional types to current and projected changes in rainfall is particularly important in drought-prone areas like the Mediterranean. Here, we report the responses of two species with contrasting leaf characteristics and post-fire regeneration strategies (Cistus ladanifer L., malacophyllous, seeder; Erica arborea L., sclerophyllous, resprouter) to a manipulative field experiment that simulated a severe drought (45% reduction of historical average rainfall). We measured monthly changes in relative growth rate (RGR), specific leaf area (SLA), bulk leaf carbon isotope composition (δ13C), predawn water potential (Ψpd), photosynthetic gas exchange, bulk modulus of elasticity and osmotic potential at maximum turgor (π). Temporal (monthly) changes in RGR of C. ladanifer were correlated with all measured leaf traits (except π) and followed Ψpd variation. However, the temporal pattern of RGR in E. arborea was largely unrelated to water availability. SLA monthly variation reflected RGR variation reasonably well in C. ladanifer, but not in E. arborea, in which shoot growth and δ13C increased at the time of maximum water stress in late summer. The relationship between water availability, and RGR and carbon assimilation in C. ladanifer, and the lack of any relationship in E. arborea suggest that the former has an enhanced capacity to harness unpredictable rainfall pulses compared with the latter. These contrasting responses to water availability indicate that the projected changes in rainfall with global warming could alter the competitive ability of these two species, and contribute to changes in plant dominance in Mediterranean shrublands.


2021 ◽  
Vol 15 (2) ◽  
pp. 152
Author(s):  
Chendy Prima Sari ◽  
Zulfan Saam ◽  
Ridwan Manda Putra

The phenomenon of paddy fields conversion in Kampar Regency which continues to increase from year to year had caused decreasing paddy fields area and threatening food supply capacity. The purpose of this study was to analyze the index and the status of the sustainability of control over the paddy fields conversion and to find out the sensitive attributes of the sustainability of control over the paddy fields conversion in Tambang Sub-District, Kampar Regency. This research was conducted in Aur Sati Village, Balam Jaya Village and Pulau Permai Village, Tambang Sub-District, Kampar Regency from October 2020 to January 2021. The method used was the survey method with a quantitative approach. The sampel of farmers in this study were 88 people who were selected by purposive sampling. Data collection was done by observation, interviews, and literature study. This study used questionnaires as an instrument to collect data.  The analytical method used in this research was the sustainability analysis carried out with the Multi-Dimensional Scaling (MDS) analysis approach with the Rap-Paddy Field tool which has been modified from Rapfish program. The results showed that the control of the paddy fields conversion in Aur Sati Village has been going very well, this can be seen from the sustainability index value of each dimension in the range of 52.4 - 83.9% (fairly - highly sustainable). On the other hand, the sustainability index value of each dimension in Balam Jaya Village ranges from 35.9 - 48.2% (less sustainable), this showed that paddy fields conversion in this village has not been well controlled. While in Pulau Permai Village, the economic dimension had a sustainability index value of 48.2% (less sustainable) and there were 2 (two) dimensions that were classified as fairly sustainable, namely the ecological dimension of 64.4% and the social dimension of 52.3%. These data provided information that the control of paddy fields conversion in Pulau Permai Village is still ecologically and socially oriented, and ignores the economic dimension. There were sensitive attributes that need to be given top priority in planning the sustainability of control over the paddy fields conversion in Tambang Sub-District, Kampar Regency, namely price stability, product markets, traditional leaders, cultivation techniques and availability of RTRW.


2020 ◽  
Author(s):  
Muhammad Khan ◽  
He Jiang ◽  
Zulfiqar Ali ◽  
Amna Nazeer ◽  
Guangheng Ni ◽  
...  

Abstract Due to climate change and an increasing temperature, drought is prevailing in several parts of the globe. Therefore, drought monitoring is a challenging task in hydrology and water management research. Drought is occurring recurrently in various climatic zones around the world. In literature, in that respect, there are several drought monitoring indicators. Regardless of their pros and cons, their abounded creates a chaotic scenario in analysis and reanalysis in certain gauge station. This research aims to improve drought monitoring system by providing a comprehensive data mining approach under principle component analysis. Consequently, we propose a new index named: Seasonal Mixture Standardized Drought Index (SMSDI). In our preliminary analysis, we have included three multiscaler Standardized Drought Indices (SDIs). In application, we have applied our proposed indicator on three meteorological gauge stations located in Pakistan. For comparative assessment, individual SDI has used to investigate the association and consistency with SMSDI. Results presented in the current study demonstrated that the SMSDI has significant correlation with individual SDIs. Hence, we conclude that the procedure of SMSDI can be deployed in hydrology and water management research for extracting reliable information related to future drought.


2021 ◽  
Author(s):  
Tianliang Jiang ◽  
Xiaoling Su

<p>Although the concept of ecological drought was first defined by the Science for Nature and People Partnership (SNAPP) in 2016, there remains no widely accepted drought index for monitoring ecological drought. Therefore, this study constructed a new ecological drought monitoring index, the standardized ecological water deficit index (SEWDI). The SEWDI is based on the difference between ecological water requirements and consumption, referred to as the standardized precipitation index (SPI) method, which was used to monitor ecological drought in Northwestern China (NWRC). The performances of the SEWDI and four widely-used drought indices [standardized root soil moisture index (SSI), self-calibrated Palmer drought index (scPDSI), standardized precipitation-evaporation drought index (SPEI), and SPI) in monitoring ecological drought were evaluated through comparing the Pearson correlations between these indices and the standardized normalized difference vegetation index (SNDVI) under different time scales, wetness, and water use efficiencies (WUEs) of vegetation. Finally, the rotational empirical orthogonal function (REOF) was used to decompose the SEWDI at a 12-month scale in the NWRC during 1982–2015 to obtain five ecological drought regions. The characteristics of ecological drought in the NWRC, including intensity, duration, and frequency, were extracted using run theory. The results showed that the performance of the SEWDI in monitoring ecological drought was highest among the commonly-used drought indices evaluated under different time scales [average correlation coefficient values (r) between SNDVI and drought indices: SEWDI<sub></sub>= 0.34, SSI<sub></sub>= 0.24, scPDSI<sub></sub>= 0.23, SPI<sub></sub>= 0.20, SPEI<sub></sub>= 0.18), and the 12-month-scale SEWDI was largely unaffected by wetness and WUE. In addition, the results of the monitoring indicated that serious ecological droughts in the NWRC mainly occurred in 1982–1986, 1990–1996, and 2005–2010, primarily in regions I, II, and V, regions II, and IV, and in region III, IV, and V, respectively. This study provides a robust approach for quantifying ecological drought severity across natural vegetation areas and scientific evidence for governmental decision makers.</p>


2019 ◽  
Vol 71 (1) ◽  
pp. 1604057 ◽  
Author(s):  
Zulfiqar Ali ◽  
Ijaz Hussain ◽  
Muhammad Faisal ◽  
Elsayed Elsherbini Elashkar ◽  
Showkat Gani ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 581
Author(s):  
Chan Wook Lee ◽  
Moo Jong Park ◽  
Do Guen Yoo

Recently, the signs of extreme droughts, which were thought of as exceptional and unlikely, are being detected worldwide. It is necessary to prepare countermeasures against extreme droughts; however, current definitions of extreme drought are just used as only one or two indicators to represent the status or severity of a drought. More representative drought factors, which can show the status and severity that are relevant to extreme drought, need to be considered depending on the characteristics of the drought and comprehensive evaluation of various indices. Therefore, this study attempted to quantitatively define regional extreme droughts using more acceptable factors. The methodology comprises five factors that are indicative of extreme drought. The five factors are (1) duration (days), (2) number of consecutive years (years), (3) water availability, (4) return period, and (5) regional experience. The results were analyzed by applying the procedure to droughts that took place in 2014–2015 in South Korea. The results showed that the applied historical event did not enter the status of extreme drought, which is proposed in this study; however, the proposed methodology is applicable because it uses acceptable and reasonable factors to judge extreme drought, but it can also take into account the past regional experience of extreme drought.


Sign in / Sign up

Export Citation Format

Share Document