scholarly journals Rainfall spatial variability in the application of catchment morphing for ungauged catchments

2021 ◽  
Author(s):  
Jun Zhang ◽  
Dawei Han ◽  
Qiang Dai

Abstract Catchment Morphing (CM) is a newly proposed approach to apply fully distributed models for ungauged catchments and has been experimented in several catchments in the UK. As one of the most important input datasets for hydrological models, rainfall spatial variability is influential to the stream variabilities and simulation performance. A homogenous rainfall was utilized in the previous experiments with Catchment Morphing. This study applied a spatially distributed rainfall from CEH-GEAR rainfall dataset in the morphed catchment for ungauged catchments as the follow-on study. Three catchments in the UK were used for rainfall spatial analysis and CEH-GEAR rainfall data were adopted for additional spatial analysis. The results demonstrate the influence of rainfall spatial information to the model performance with CM and illustrate the ability of morphed catchment to tackle with spatially varied information. More spatially distributed information is expected to be introduced for a wider application of CM.

2018 ◽  
Vol 20 (3) ◽  
pp. 577-587 ◽  
Author(s):  
Jun Zhang ◽  
Dawei Han ◽  
Yang Song ◽  
Qiang Dai

Abstract Rainfall spatial variability was assessed to explore its influence on runoff modelling. Image size, coefficient of variation (Cv) and Moran's I were chosen to assess for rainfall spatial variability. The smaller the image size after compression, the less complex is the rainfall spatial variability. The results showed that due to the drawing procedure and varied compression methods, a large uncertainty exists for using image size to describe rainfall spatial variability. Cv quantifies the variability between different rainfall values without considering rainfall spatial distribution and Moran's I describes the spatial autocorrelation between gauges rather than the values. As both rainfall values and spatial distribution have an influence on runoff modelling, the combination of Cv and Moran's I was further explored. The results showed that the combination of Cv and Moran's I is reliable to describe rainfall spatial variability. Furthermore, with the increase of rainfall spatial variability, the hydrological model performance decreases. Moreover, it is difficult for a lumped model to cope with rainfall events assigned with complex rainfall spatial variability since spatial information is not taken into consideration (i.e. the VIC model used in this study). Therefore, it is recommended to apply distributed models that can deal with more spatial input information.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hafsa Bouamri ◽  
Christophe Kinnard ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
...  

Estimating snowmelt in semi-arid mountain ranges is an important but challenging task, due to the large spatial variability of the snow cover and scarcity of field observations. Adding solar radiation as snowmelt predictor within empirical snow models is often done to account for topographically induced variations in melt rates. This study examines the added value of including different treatments of solar radiation within empirical snowmelt models and benchmarks their performance against MODIS snow cover area (SCA) maps over the 2003-2016 period. Three spatially distributed, enhanced temperature index models that, respectively, include the potential clear-sky direct radiation, the incoming solar radiation and net solar radiation were compared with a classical temperature-index (TI) model to simulate snowmelt, SWE and SCA within the Rheraya basin in the Moroccan High Atlas Range. Enhanced models, particularly that which includes net solar radiation, were found to better explain the observed SCA variability compared to the TI model. However, differences in model performance in simulating basin wide SWE and SCA were small. This occurs because topographically induced variations in melt rates simulated by the enhanced models tend to average out, a situation favored by the rather uniform distribution of slope aspects in the basin. While the enhanced models simulated more heterogeneous snow cover conditions, aggregating the simulated SCA from the 100 m model resolution towards the MODIS resolution (500 m) suppresses key spatial variability related to solar radiation, which attenuates the differences between the TI and the radiative models. Our findings call for caution when using MODIS for calibration and validation of spatially distributed snow models.


Author(s):  
Fang Zhao ◽  
Liping Wang ◽  
Hesham Elbadrawi ◽  
L. David Shen

While geographic information systems (GIS) have proven to be powerful tools that are capable of storing, displaying, and analyzing spatially distributed information, current GIS lack adequate capabilities for handling temporal information. As a result, analyses are mostly performed assuming a fixed time point. Longitudinal analyses that take time into consideration cannot be easily accomplished. For many applications, information constantly changes in both space and time. A temporal GIS, one that is capable of handling temporal as well as spatial information, will greatly expand the current GIS applications and allow new information to be obtained. Some preliminary results are presented of an ongoing study of a temporal GIS. To explore the problems and potential benefits of a temporal GIS, a simple method has been developed to record the changes in spatial objects for time using personal computer ARC/INFO relational databases as well as a set of commands to query the spatiotemporal data. The use of this temporal GIS method is illustrated using an example of transit service analysis.


2012 ◽  
Vol 16 (7) ◽  
pp. 2219-2231 ◽  
Author(s):  
A. Hartmann ◽  
J. Lange ◽  
M. Weiler ◽  
Y. Arbel ◽  
N. Greenbaum

Abstract. In karst systems, near-surface dissolution of carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scarce regions. In this study, we developed a recharge model that is based on a conceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the spatial variability is not included.


2012 ◽  
Vol 9 (2) ◽  
pp. 2443-2473
Author(s):  
A. Hartmann ◽  
J. Lange ◽  
M. Weiler ◽  
Y. Arbel ◽  
N. Greenbaum

Abstract. In karst systems, surface near dissolution carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. In this study, we developed a recharge model that is based on a perceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the variability is not included.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 233-240 ◽  
Author(s):  
F. S. Goderya ◽  
M. F. Dahab ◽  
W. E. Woldt ◽  
I. Bogardi

A methodology for incorporation of spatial variability in modeling non-point source groundwater nitrate contamination is presented. The methodology combines geostatistical simulation and unsaturated zone modeling for estimating the amount of nitrate loading to groundwater. Three dimensional soil nitrogen variability and 2-dimensional crop yield variability are used in quantifying potential benefits of spatially distributed nitrogen input. This technique, in combination with physical and chemical measurements, is utilized as a means of illustrating how the spatial statistical properties of nitrate leaching can be obtained for different scenarios of fixed and variable rate nitrogen applications.


2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Hyeok Jin ◽  
Kideok Do ◽  
Sungwon Shin ◽  
Daniel Cox

Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge.


2013 ◽  
Vol 46 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Sokchhay Heng ◽  
Tadashi Suetsugi

The main objective of this research is to regionalize the sediment rating curve (SRC) for subsequent sediment yield prediction in ungauged catchments (UCs) in the Lower Mekong Basin. Firstly, a power function-based SRC was fitted for 17 catchments located in different parts of the basin. According to physical characteristics of the fitted SRCs, the sediment amount observed at the catchment outlets is mainly transported by several events. This also indicates that clockwise hysteretic phenomenon of sediment transport is rather important in this basin. Secondly, after discarding two outlier catchments due to data uncertainty, the remaining 15 catchments were accounted for the assessment of model performance in UCs by means of jack-knife procedure. The model regionalization was conducted using spatial proximity approach. As a result of comparative study, the spatial proximity approach based on single donor catchment provides a better regionalization solution than the one based on multiple donor catchments. By considering the ideal alternative, a satisfactory result was obtained in almost all the modeled catchments. Finally, a regional model which is a combination of the 15 locally fitted SRCs was established for use in the basin. The model users can check the probability that the prediction results are satisfactory using the designed probability curve.


Author(s):  
Song Song ◽  
Youpeng Xu ◽  
Jiali Wang ◽  
Jinkang Du ◽  
Jianxin Zhang ◽  
...  

Distributed/semi-distributed models are considered to be sensitive to the spatial resolution of the data input. In this paper, we take a small catchment in high urbanized Yangtze River Delta, Qinhuai catchment as study area, to analyze the impact of spatial resolution of precipitation and the potential evapotranspiration (PET) on the long-term runoff and flood runoff process. The data source includes the TRMM precipitation data, FEWS download PET data, and the interpolated metrological station data. GIS/RS technique was used to collect and pre-process the geographical, precipitation and PET series, which were then served as the input of CREST (Coupled Routing and Excess Storage) model to simulate the runoff process. The results clearly showed that, the CREST model is applicable to the Qinhuai catchment; the spatial resolution of precipitation had strong influence on the modelled runoff results and the metrological precipitation data cannot be substituted by the TRMM data in small catchment; the CREST model was not sensitive to the spatial resolution of the PET data, while the estimation fourmula of the PET data was correlated with the model quality. This paper focused on the small urbanized catchment, suggesting the influential explanatory variables for the model performance, and providing reliable reference for the study in similar area.


2021 ◽  
Vol 25 (11) ◽  
pp. 5805-5837
Author(s):  
Oscar M. Baez-Villanueva ◽  
Mauricio Zambrano-Bigiarini ◽  
Pablo A. Mendoza ◽  
Ian McNamara ◽  
Hylke E. Beck ◽  
...  

Abstract. Over the past decades, novel parameter regionalisation techniques have been developed to predict streamflow in data-scarce regions. In this paper, we examined how the choice of gridded daily precipitation (P) products affects the relative performance of three well-known parameter regionalisation techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments with diverse hydrological regimes across Chile. We set up and calibrated a conceptual semi-distributed HBV-like hydrological model (TUWmodel) for each catchment, using four P products (CR2MET, RF-MEP, ERA5, and MSWEPv2.8). We assessed the ability of these regionalisation techniques to transfer the parameters of a rainfall-runoff model, implementing a leave-one-out cross-validation procedure for each P product. Despite differences in the spatio-temporal distribution of P, all products provided good performance during calibration (median Kling–Gupta efficiencies (KGE′s) > 0.77), two independent verification periods (median KGE′s >0.70 and 0.61, for near-normal and dry conditions, respectively), and regionalisation (median KGE′s for the best method ranging from 0.56 to 0.63). We show how model calibration is able to compensate, to some extent, differences between P forcings by adjusting model parameters and thus the water balance components. Overall, feature similarity provided the best results, followed by spatial proximity, while parameter regression resulted in the worst performance, reinforcing the importance of transferring complete model parameter sets to ungauged catchments. Our results suggest that (i) merging P products and ground-based measurements does not necessarily translate into an improved hydrologic model performance; (ii) the spatial resolution of P products does not substantially affect the regionalisation performance; (iii) a P product that provides the best individual model performance during calibration and verification does not necessarily yield the best performance in terms of parameter regionalisation; and (iv) the model parameters and the performance of regionalisation methods are affected by the hydrological regime, with the best results for spatial proximity and feature similarity obtained for rain-dominated catchments with a minor snowmelt component.


Sign in / Sign up

Export Citation Format

Share Document