scholarly journals An evaluation of CMIP5 precipitation simulations using ground observations over ten river basins in China

2021 ◽  
Author(s):  
Xiuqin Yang ◽  
Bin Yong ◽  
Zhiguo Yu ◽  
Yuqing Zhang

Abstract Using the precipitation measurements obtained from 2,419 ground meteorological stations over China from 1960 to 2005 as benchmark, the performance of 21 single-mode precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated using Taylor diagrams and several statistical metrics. Based on statistical metrics, the models were ranked in terms of their ability to reproduce similar patterns in precipitation relative to the observations. Except in Southeast and Pearl river basins, research results show that all model ensemble means overestimate in the rest of the river basins, especially in Southwest and Northwest. The performance of CMIP5 models is quite different among each river basin; most models show significant overestimation in Northwest and Yellow and significant underestimations in Southeast and Pearl. The simulations are more reliable in Songhua, Liao, Yangtze, and Pearl than in other river basins according to spatial distribution and interannual variability. No individual model performs well in all the river basins both spatially and temporally. In Songhua, Liao, Yangtze, and Pearl, precipitation indices are more consistent with observations, and the spread among models is smaller. The multimodel ensemble selected from the most reasonable models indicates improved performance relative to all model ensembles.

2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2017 ◽  
Vol 30 (23) ◽  
pp. 9773-9782 ◽  
Author(s):  
Anson H. Cheung ◽  
Michael E. Mann ◽  
Byron A. Steinman ◽  
Leela M. Frankcombe ◽  
Matthew H. England ◽  
...  

In a comment on a 2017 paper by Cheung et al., Kravtsov states that the results of Cheung et al. are invalidated by errors in the method used to estimate internal variability in historical surface temperatures, which involves using the ensemble mean of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to estimate the forced signal. Kravtsov claims that differences between the forced signals in the individual models and as defined by the multimodel ensemble mean lead to errors in the assessment of internal variability in both model simulations and the instrumental record. Kravtsov proposes a different method, which instead uses CMIP5 models with at least four realizations to define the forced component. Here, it is shown that the conclusions of Cheung et al. are valid regardless of whether the method of Cheung et al. or that of Kravtsov is applied. Furthermore, many of the points raised by Kravtsov are discussed in Cheung et al., and the disagreements of Kravtsov appear to be mainly due to a misunderstanding of the aims of Cheung et al.


2020 ◽  
Vol 20 (13) ◽  
pp. 7829-7842 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased to 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models, despite an increase in TCR between CMIP eras (mean TCR increased from 1.7 to 1.9 K). The evolution of the warming suggests, however, that several of the CMIP6 models apply too strong aerosol cooling, resulting in too weak mid-20th century warming compared to the instrumental record.


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2012 ◽  
Vol 25 (21) ◽  
pp. 7764-7771 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yoo-Geun Ham ◽  
June-Yi Lee

This study assesses the changes in the tropical Pacific Ocean sea surface temperature (SST) trend and ENSO amplitude by comparing a historical run of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP) phase-5 multimodel ensemble dataset (CMIP5) and the CMIP phase-3 dataset (CMIP3). The results indicate that the magnitude of the SST trend in the tropical Pacific basin has been significantly reduced from CMIP3 to CMIP5, which may be associated with the overestimation of the response to natural forcing and aerosols by including Earth system models in CMIP5. Moreover, the patterns of tropical warming over the second half of the twentieth century have changed from a La Niña–like structure in CMIP3 to an El Niño–like structure in CMIP5. Further analysis indicates that such changes in the background state of the tropical Pacific and an increase in the sensitivity of the atmospheric response to the SST changes in the eastern tropical Pacific have influenced the ENSO properties. In particular, the ratio of the SST anomaly variance in the eastern and western tropical Pacific increased from CMIP3 to CMIP5, indicating that a center of action associated with the ENSO amplitude has shifted to the east.


2015 ◽  
Vol 56 (70) ◽  
pp. 89-97 ◽  
Author(s):  
Marion Réveillet ◽  
Antoine Rabatel ◽  
Fabien Gillet-Chaulet ◽  
Alvaro Soruco

AbstractBolivian glaciers are an essential source of fresh water for the Altiplano, and any changes they may undergo in the near future due to ongoing climate change are of particular concern. Glaciar Zongo, Bolivia, located near the administrative capital La Paz, has been extensively monitored by the GLACIOCLIM observatory in the last two decades. Here we model the glacier dynamics using the 3-D full-Stokes model Elmer/Ice. The model was calibrated and validated over a recent period (1997–2010) using four independent datasets: available observations of surface velocities and surface mass balance were used for calibration, and changes in surface elevation and retreat of the glacier front were used for validation. Over the validation period, model outputs are in good agreement with observations (differences less than a small percentage). The future surface mass balance is assumed to depend on the equilibrium-line altitude (ELA) and temperature changes through the sensitivity of ELA to temperature. The model was then forced for the 21st century using temperature changes projected by nine Coupled Model Intercomparison Project phase 5 (CMIP5) models. Here we give results for three different representative concentration pathways (RCPs). The intermediate scenario RCP6.0 led to 69 ± 7% volume loss by 2100, while the two extreme scenarios, RCP2.6 and RCP8.5, led to 40 ± 7% and 89 ± 4% loss of volume, respectively.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Udit Bhatia ◽  
Amar Deep Tiwari

Abstract Climate change is likely to pose enormous challenges for agriculture, water resources, infrastructure, and livelihood of millions of people living in South Asia. Here, we develop daily bias-corrected data of precipitation, maximum and minimum temperatures at 0.25° spatial resolution for South Asia (India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka) and 18 river basins located in the Indian sub-continent. The bias-corrected dataset is developed using Empirical Quantile Mapping (EQM) for the historic (1951–2014) and projected (2015–2100) climate for the four scenarios (SSP126, SSP245, SSP370, SSP585) using output from 13 General Circulation Models (GCMs) from Coupled Model Intercomparison Project-6 (CMIP6). The bias-corrected dataset was evaluated against the observations for both mean and extremes of precipitation, maximum and minimum temperatures. Bias corrected projections from 13 CMIP6-GCMs project a warmer (3–5°C) and wetter (13–30%) climate in South Asia in the 21st century. The bias-corrected projections from CMIP6-GCMs can be used for climate change impact assessment in South Asia and hydrologic impact assessment in the sub-continental river basins.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2013 ◽  
Vol 26 (19) ◽  
pp. 7692-7707 ◽  
Author(s):  
Yao Yao ◽  
Yong Luo ◽  
Jianbin Huang ◽  
Zongci Zhao

Abstract The extreme monthly-mean temperatures simulated by 28 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are evaluated and compared with those from 24 models in the third phase of the Coupled Model Intercomparison Project (CMIP3). Comparisons with observations and reanalyses indicate that the models from both CMIP3 and CMIP5 perform well in simulating temperature extremes, which are expressed as 20-yr return values. When the climatological annual cycle is removed, the ensemble spread in CMIP5 is smaller than that in CMIP3. Benefitting from a higher resolution, the CMIP5 models perform better at simulating extreme temperatures on the local gridcell scale. The CMIP5 representative concentration pathway (RCP4.5) and CMIP3 B1 experiments project a similar change pattern in the near future for both warm and cold extremes, and the pattern is in agreement with that of the seasonal extremes. By the late twenty-first century, the changes in monthly temperature extremes projected under the three CMIP3 (B1, A1B, and A2) and two CMIP5 (RCP4.5 and RCP8.5) scenarios generally follow the changes in climatological annual cycles, which is consistent with previous studies on daily extremes. Compared with the CMIP3 ensemble, the CMIP5 ensemble shows a larger intermodel uncertainty with regard to the change in cold extremes in snow-covered regions. Enhanced changes in extreme temperatures that exceed the global mean warming are found in regions where the retreat of snow (or the soil moisture feedback effect) plays an important role, confirming the findings for daily temperature extremes.


Sign in / Sign up

Export Citation Format

Share Document