In-vessel co-composting – a rapid resource recovery option for septage treatment in Indian cities

2018 ◽  
Vol 8 (4) ◽  
pp. 688-697 ◽  
Author(s):  
Anu Rachel Thomas ◽  
Martin Kranert ◽  
Ligy Philip

Abstract Septage management is a challenging task across India as more than 44% of the population depends on septic tanks for human waste management. Septage collected from Chennai city, India, was found to be rich in nutrients even though the total solids content (<2%) and C/N are low. The current practice of septage disposal in Chennai city is co-treatment in existing sewage treatment plants. The main drawback of this method is that treatment efficiency could deteriorate if the organic load increased much beyond the design load of the treatment plant and would result in poor treated-water quality. In this context, the present study focused on the potential of in-vessel co-composting as a sustainable treatment option. In order to enhance the co-composting process, suitable co-substrates were identified for making the process efficient and cost-effective. The area under the temperature profile during composting was used as an assessment tool for the identification of the proper mix. Addition of mixed organic waste and coir pith waste (bulking agent) to the dewatered septage gave the highest area among the different combinations. Different waste combinations were investigated in order to assess the suitability for field scale application.

1997 ◽  
Vol 36 (12) ◽  
pp. 117-124 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Chemical conditioning improves sludge dewatering. Choice of chemical conditioners is very much dependent on the characteristics of the sludges and the type of dewatering devices. Lime, alum, ferric chloride and polyelectrolytes are commonly used chemical conditioners. Anaerobic digested sludge samples collected from a sewage treatment plant with different oil contents varying from 1.8% to 8.0% by weight have been examined in the laboratory to find out their specific resistance, capillary suction time and filter yield. Lime and alum were used separately as conditioners. Different dosages of conditioner varying from 2% to 12% by weight were used to determine the optimum chemical dosage for varying oil contents. Lime dosages of about 6% were found to yield favourable characteristics. Addition of alum decreases the specific resistances and capillary suction times of oily sludges rapidly up to 4% dosages. Alum dosages beyond 4% only increase the solids content in the sludge cake and increase the sludge volume to be handled. A correlation between CST and specific resistance to filtration was established. CST can be measured easily and quickly in the laboratories. Using the CST and the correlation a quick prediction on dewaterability can be established.


2016 ◽  
Vol 15 (3) ◽  
pp. 840-848
Author(s):  
B. Geraats ◽  
M. Parnowska ◽  
L. Kox

Abstract At Linz-Unkel (Germany) sewage treatment plant the first full scale state-of-art EloDry-Pro® plant for sewage sludge has been constructed, consisting of the PYREG® reactor and the EloDry® belt dryer. The system is characterised by small footprint, flexibility, modular design and efficient energy management. The sludge dried using an EloDry® belt dryer undergoes staged combustion using the PYREG® module at around 6,500°C. This reduces the sludge to a fraction of its original volume while disinfecting it and removing micro-pollutants such as pharmaceutical residues. The residual ash, which has a high percentage of plant-available phosphorus, is then supplied to the fertiliser industry as a recycled raw material. The working principle of EloDry-Pro® installation, including heat flows of the system, is presented. The paper describes Pyreg®'s advanced emission control systems, preventing NOx formation and removing harmful substances such as mercury and sulphur. The EloDry-Pro® technology is an innovative and cost-effective approach to decentralised thermal recycling of sewage sludge. Both sewage sludge volumes and transportation costs are reduced by up to 90%, therefore making it a low carbon cost-effective alternative to the transportation of sludge and allowing local sludge processing at plants under 100 k population.


1990 ◽  
Vol 25 (1) ◽  
pp. 91-108
Author(s):  
Norman D. Looker ◽  
Edward .A. McBean ◽  
Grahame J. Farquhar

Abstract A comparison of costs of implementing an advanced wastewater treatment system for a cadmium plating plant, versus the sludge disposal costs of the sewage treatment plant to which the plating plant is discharging its effluent, is described. An economic analysis spreadsheet approach using Lotus 1-2-3 is employed. A case study application demonstrates for overall society net benefit that it is cost-effective to initiate pretreatment at electroplating facilities which allows a municipal facility to dispose of its sludge on agricultural land rather than be required for landfilling. Sensitivity analyses to market interest rate, sludge production, sludge disposal fees and drag-out rates are explored.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1447-1451 ◽  
Author(s):  
Peter Thomas Ruggenthaler

The sewage treatment plant at Simmering, Vienna, has been operating since June 1980, together with the ‘EbS' plant for sludge treatment and disposal. This latter consisted of centrifuges, grinder dryers and fluidised bed incineration but due to difficulties with the grinder dryers it has never operated efficiently. Accordingly trials have been done using improved centrifuges and filter presses to increase the dry solids content of the cake fed to the incinerators without using the grinder dryers. It was found that all systems tried were an improvement on the existing but that the best result was achieved using a Centripress on preheated sludge conditioned by polyelectrolyte. The plant was converted to this system in 1987 and results of full-scale operation as well as test results are given in the paper.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1077-1086 ◽  
Author(s):  
U. Nyberg ◽  
H. Aspegren ◽  
B. Andersson ◽  
J. la C. Jansen ◽  
I.S. Villadsen

In Sweden many advanced sewage treatment plants for BOD and phosphorus removal have to be extended with nitrogen removal. Due to existing plant configuration and wastewater composition, denitrification with supply of an external carbon source can be a cost-effective solution in many cases. At the Klagshamn wastewater treatment plant in Malmo investigations for extensive nitrogen removal have been made in a single-sludge system with pre-precipitation and post-denitrification where methanol was added for denitrification. Results from the tests showed that a high level of nitrogen removal can be reached, and that the process was stable and easy to operate. The process application gave less supplementary cost for an extended nitrogen removal than for upgrading the plant with larger basin volumes. In order to examine the purification performance caused by the addition of methanol, the starting period was followed extensively with online nitrate sensors and daily composite samples. The development of the denitrif ication capacity of the sludge with methanol and acetate as carbon sources was followed and microbiological changes were examined microscopically. Complete denitrification was obtained after approximately one month at 10°C. The denitrification capacity of the sludge with methanol reached that of acetate after about the same time. The microscopic examination revealed a growing population of budding and/or appendaged bacteria, presumably Hyphomicrobium spp, reaching a stable maximum at the time when optimal nitrate removal occurred.


2000 ◽  
Vol 27 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Jonathon Howard ◽  
Daryl McGregor

Eutrophication of waterways, expressed as excess growth of cyanobacteria, is frequently caused by excessive inputs of phosphorus. Human activities are often the origin of such nutrient enrichment and so many governments have addressed the issue by implementing a range of technological, legislative and biological measures. By contrast, Australia has taken a different approach and also relied heavily on public education. This paper compares the success of two of these ‘Phoswatch’ public education programmes. One campaign occurred within the Murray-Darling Basin in a country town called Albury-Wodonga. The other occurred within the Hawkesbury-Nepean Basin in the western suburbs of Sydney. The campaigns were evaluated using a series of community surveys and by monitoring phosphorus loads at a sewage treatment plant. The Albury-Wodonga campaign was the most effective of the two campaigns with increases in the number of people reporting a range of behaviours and these resulted in a decrease in phosphorus loads entering the local treatment plant. The comparison suggests that clear simple messages, a diversity of media exposure, and some form of feedback are critical to programme success. It is concluded that campaigns such as Phoswatch can provide a long term, cost effective way of addressing eutrophication by focusing on the problem at source and creating community support for an integrated strategy.


2008 ◽  
Vol 57 (4) ◽  
pp. 479-483 ◽  
Author(s):  
C. M. Braguglia ◽  
G. Mininni ◽  
A. Gianico

Results of three semi-continuous anaerobic tests were reported and discussed. Each test was carried out by two parallel anaerobic reactors fed with waste activated sludge, either as it was sampled from the sewage treatment plant of Rome North or previously disintegrated by ultra-sound treatment. Activated sludge was sonicated at the energy input of 5,000 or 2,500 kJ kg−1 dry solids corresponding to a disintegration degree of approximately 8 or 4%, respectively. Sonication proved to be effective both in increasing VS destruction and cumulative biogas production. The best increase of VS destruction (from 30 to 35%) was achieved in test #3 carried out at high organic load (10 d residence time) and low energy input (2,500 kJ kg−1 dry solids). The best increase in cumulative biogas production (from 472 to 640 NL after 67 d of tests i.e.) was obtained in test #1 at low organic load (20 d residence time) and high energy input (5,000 kJ kg−1 dry solids). Specific biogas production varied in the tests carried out with untreated sludge (0.55 – 0.67 Nm3 kg−1 VS destroyed) but was practically unchanged for all the tests with sonicated sludge (0.7 Nm3 kg−1 VS destroyed).


Author(s):  
Diogo Botelho Correa de Oliveira ◽  
Willames De Albuquerque Soares ◽  
Marco Aurélio Calixto Ribeiro de Holanda

 Effluent collection and stormwater management make use of different drainage systems, which should remain unconnected with one another. If stormwater drains into sewage collection systems, it often causes changes in effluent quality indicators at sewage treatment plants. This study sought to quantify the changes caused by rain in a Wastewater Treatment Plant (WWTP) located in Paulista, PE, which uses the activated sludge system. Accordingly, changes in pH, temperature, BOD, and treatment efficiency at the inlet and outlet, as well as inlet flow were analyzed on dry and rainy days at the plant, which has a sewage capacity of 400 L s-1. The input volume was found to be greater than the design flow of the station, about 25%. With this, some relevant operational controls were identified, such as temporarily shutting down sewage pumping stations in order to maintain full operation of the system and avoid overload. The pH increases slightly in alkalinity, about 0.3, but this does not interfere with the treatment process. The temperature of the influent on rainy days is about 3 to 5 degrees cooler, depending on the intensity of the event. Using the T and Z tests, it was possible to identify that BOD concentrations in the influent and the effluent were not significantly different (uneq. var. t: 1.18 > 0.26 and uneq var. z: 0.71 > 0.48, respectively), and the organic load removal efficiency was maintained, contrary to what is expected with other, more simple types of treatment.


2020 ◽  
pp. 150-164
Author(s):  
Arfaa Feezanul Islam ◽  
Faria Tabassum ◽  
Nadim Reza Khandaker

At present, Pagla Sewage Treatment Plant (STP) is the only sewage treatment plant in Dhaka, the capital city of Bangladesh, with a capacity to treat 120 million litres per day (MLD) of sewage. Evidence suggests that the plant is overburdened and cannot by itself handle the wastewater generated in Dhaka. Furthermore, the treatment plant is hampered by a number of functional problems which limit both its capacity to treat wastewater, and the efficiency of the treatment process. Rectifying the functional problems of the plant and implementing enhancement measures would greatly improve the functionality of Pagla STP. A thorough evaluation was carried out on the performance of the plant and a detailed process flow diagram developed. Several functional problems were identified, mostly pertaining to the primary sedimentation tanks and the unused sludge lagoons. The influent and effluent characteristics of Pagla STP were also assessed using BOD5 values as the primary criteria. It was found that the influent BOD5 value was 832 mg/L and effluent BOD5 was 497.5 mg/L, against design values of 120 mg/L and 50 mg/L respectively. Based on the evaluation, theoretical analysis was done, and a sustainable, cost and energy efficient retrofit was proposed whereby the sludge lagoons would be converted to anaerobic lagoons to facilitate biological pretreatment. It is estimated that implementing such an enhancement would increase the treatment capacity of the plant beyond its original design. Furthermore, theoretical calculations show up to 5,000 m3 of methane gas can be generated daily from the plant, which is enough to power 6,000 homes with renewable energy.


Sign in / Sign up

Export Citation Format

Share Document