Incorporating climate change adaptation strategies in urban water supply planning: the case of central Chile

2014 ◽  
Vol 5 (3) ◽  
pp. 357-376 ◽  
Author(s):  
Sebastián Bonelli ◽  
Sebastián Vicuña ◽  
Francisco J. Meza ◽  
Jorge Gironás ◽  
Jonathan Barton

Water management systems have been typically designed and operated under the assumption of stationarity. This assumption may no longer be valid under climate change scenarios. Water availability may change dramatically at some locations due mainly to possible impacts of changes in temperature and precipitation over streamflow volume and seasonality, adding pressure to water supply systems. It has been shown that snowmelt-dominated basins are particularly sensitive to such changes. Hence, human settlements and economic activities developed in such areas are particularly vulnerable. The Maipo river basin in Central Chile – where more than 6 million people live – is one of these areas. We used a calibrated water resources model of the Maipo river basin, in order to propose a general framework to evaluate adaptation options at the urban level. When comparing a mid-21st century period to a historic control period, results for three selected performance metrics showed a decrease in water system performance. Adaptation measures were evaluated in their capacity to maintain current water security standards. Two alternatives stand as highly effective options to this end: water rights purchases and improvements in water use efficiency. The political and economic costs of implementing these options, which could deem them unviable, are not considered here but are worthy of further research.

2019 ◽  
Vol 23 (2) ◽  
pp. 1145-1162 ◽  
Author(s):  
Daeha Kim ◽  
Jong Ahn Chun ◽  
Si Jung Choi

Abstract. Climate change is a global stressor that can undermine water management policies developed with the assumption of stationary climate. While the response-surface-based assessments provided a new paradigm for formulating actionable adaptive solutions, the uncertainty associated with the stress tests poses challenges. To address the risks of unsatisfactory performances in a climate domain, this study proposed the incorporation of the logistic regression into a decision-centric framework. The proposed approach replaces the “response surfaces” of the performance metrics typically used for the decision-scaling framework with the “logistic surfaces” that describes the risk of system failures against predefined performance thresholds. As a case study, water supply and environmental reliabilities were assessed within the eco-engineering decision-scaling framework for a complex river basin in South Korea. Results showed that human-demand-only operations in the river basin could result in the water deficiency at a location requiring environmental flows. To reduce the environmental risks, the stakeholders could accept increasing risks of unsatisfactory water supply performance at the sub-basins with small water demands. This study suggests that the logistic surfaces could provide a computational efficiency to measure system robustness to climatic changes from multiple perspectives together with the risk information for decision-making processes.


2018 ◽  
Author(s):  
Daeha Kim ◽  
Jong Ahn Chun ◽  
Si-Jung Choi

Abstract. Climate change is a global stressor that can undermine water management policies developed under the assumption of stationary climate, necessitating robust solutions to reducing the risk of system failures for uncertain future climates. While the response-surface-based assessments have provided convenience to explore responsive behaviours of expected system performance to climatic stresses, they were unable to predict the risk of system failures from individual climate projections. In this study, we proposed to use the logistic regressions for evaluating the probability of non-successive outcomes against pre-defined thresholds directly from climate projections, which may be more informative for decision making processes than the expected performances. As a case study, water supply and ecological reliabilities within a large river basin were assessed by combining the eco-engineering decision scaling framework and the logistic regressions. The impact assessment for the South Korean river basin showed that optimal water supply performance at the sub-basins were expected to be satisfactory for the upcoming 20 years of 2020–2039, while the human-demand-only operations could lower the ecological reliabilities. When considering ecological demands in water operations to reduce the ecological vulnerabilities, the stakeholders should accept increasing risks of unsatisfactory supply at the sub-basins with low demands. This study highlights that binary conversions of the performance metrics from the stress tests allow users to measure the risks of system failures varying across sub-components and standpoints with minimal computational costs.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 101-108 ◽  
Author(s):  
S. Maheepala ◽  
C. Perera

This paper describes a probability-based method for assessing the potential impact of climate change on urban water supply systems. Specifically, the assessment method uses probability distributions to place a confidence level on the plausible values of response variables. The Benalla water supply system has been used to demonstrate applicability of the proposed assessment method. For the application, the impact of the 2030 climate change scenarios on streamflows and system yield has been examined. The preliminary results have demonstrated that the proposed assessment method can provide valuable insights into the impact of climate change on water supply systems, allowing it to be incorporated into planning decisions.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2052 ◽  
Author(s):  
Kim ◽  
Yoo ◽  
Chung ◽  
Kim

Recently, climate change has increased the frequency of extreme weather events. In South Korea, extreme droughts are frequent and cause serious damage. To identify the risk of extreme drought, we need to calculate the hydrologic risk using probabilistic analysis methods. In particular, future hydrologic risk of extreme drought should be compared to that of the control period. Therefore, this study quantitatively assessed the future hydrologic risk of extreme drought in South Korea according to climate change scenarios based on the representative concentration pathway (RCP) 8.5. A threshold level method was applied to observation-based rainfall data and climate change scenario-based future rainfall data to identify drought events and extract drought characteristics. A bivariate frequency analysis was then performed to estimate the return period considering both duration and severity. The estimated return periods were used to calculate and compare hydrologic risks between the control period and the future. Results indicate that the average duration of drought events for the future was similar with that for the control period, however, the average severity increased in most future scenarios. In addition, there was decreased risk of maximum drought events in the Yeongsan River basin in the future, while there was increased risk in the Nakdong River basin. The median of risk of extreme drought in the future was calculated to be larger than that of the maximum drought in the control period.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Anne Louise de Melo Dores ◽  
Felipe Corrêa Veloso dos Santos

AbstractTo elaborate efficient and economical water supply systems is one of the main objectives in the sanitation companies water system projects. In order to address the challenges faced in reaching this objective, this study aims to identify, first, the relation between the percentage of non-conformed samples in treated water and the inefficiency of the filtering units installed in the water treatment plant, and second, if, by drawing the consumption variation curve it is the most efficient way to predict the storage tanks volume—comparing necessary capacity, determined by the consumption curve, and installed capacity, predict by the outdated Brazilian normative. In order to reach answers for these two questions, this study measured the operating efficiency of the treatment plant as well as have set a quantitative comparison between the two dimensioning criteria for storage tanks volume present in the literature. As a result, the analysis provided the authors to detect a focus of contamination in the single-layered filtering units, limited by the filtering capacity of 2–6 m3/(m2 day), whilst operating at 333.13 m3/(m2 day). As well as to detect by the drawing of the consumption variation curve an oversize of 68% and 60% in the dimensioning of the studied storage tanks. With the results provided by this analysis approach, it was possible to efficiently detect and correct critical impairments in the treatment phase and to conclude that a long-term analysis should be drawn in order to affirm if the consumption variation curve is the best design methodology for the reservoirs.


2016 ◽  
Vol 52 (2) ◽  
pp. 622-643 ◽  
Author(s):  
Edoardo Borgomeo ◽  
Mohammad Mortazavi-Naeini ◽  
Jim W. Hall ◽  
Michael J. O'Sullivan ◽  
Tim Watson

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2018 ◽  
Vol 119 ◽  
pp. 436-445 ◽  
Author(s):  
Fernanda Cristina Oliveira Tayt’Sohn ◽  
Ana M.B. Nunes ◽  
Amaro Olimpio Pereira

Sign in / Sign up

Export Citation Format

Share Document