Selection and prioritization of mitigation measures to realize climate neutral operation of a water cycle company

2015 ◽  
Vol 7 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Jan Peter van der Hoek ◽  
Stefan Mol ◽  
Theo Janse ◽  
Enna Klaversma ◽  
Joost Kappelhof

Waternet, the public water cycle utility of Amsterdam and surroundings, has the ambition to operate climate neutrally in 2020. This requires a reduction of greenhouse gas (GHG) emissions of 48 kton CO2-eq. An inventory was made of measures to realize the target either in 2020 or in 2050. For all measures the effects on GHG emissions and on costs were determined. To comply with two core values of Waternet – economic effectivity and sustainability – the measures were prioritized based on CO2 effectivity, defined as costs per ton GHG emission reduction. To realize the target in 2020, 34 measures have to be implemented. The total investments are € 60 million, while the measures result in a decrease in yearly costs of € 5 million from 2020 onwards. In the case where the target has to be realized in 2050, 10 measures have to be implemented with a total investment of € 100 million and a decrease in yearly costs of € 16 million from 2050 onwards. As the cumulative cost savings in 2050 are € 50 million higher for the case where the target is already reached in 2020, and the uncertainty is lower, the realization of the target in 2020 is preferred.

2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.


Author(s):  
Fan Yang ◽  
Chris Yuan ◽  
Xiang Zhao

The use of electric vehicle (EV) has been widely recognized as an effective way to reduce greenhouse gas (GHG) emissions from transportation sector. However, the geographic difference of GHG emission reduction from EV deployment is seldom explored. This paper presents a study on the total GHG emissions generated from the life cycle of an EV (represented by Nissan Leaf) and an internal combustion vehicle (ICV) (represented by Toyota Corolla) for benchmarking on the potential emission reductions in the United States. The differences of electricity mix and driving style in each state are considered in the analysis. The results indicate a 43% GHG emissions reduction from ICV with the deployment of EV under the current average United States’ electricity generation scheme and transportation style. But the life cycle GHG emission reductions vary significantly from state to state in the U.S. Some states such as Indiana, Wyoming and West Virginia can only get 7237, 9501 and 9860 kg CO2 equivalent reduced, while some states such as Vermont, New Jersey and Idaho can get 57915, 57206 and 49039 kg CO2 equivalent GHG emissions reduced. This study can be useful in supporting future decision-making and strategy development for EV deployment in the U.S.


Author(s):  
Sazalina Zakaria ◽  
Radin Diana R. Ahmad ◽  
Ahmad Rosly Abbas ◽  
Mohd Faizal Mohideen Batcha

The power sector has been playing a vital role in the industrialization, societal and economic development of a nation. In Malaysia, the total power generation for 2014 is 147,480GWh and eventually accounts for 54% of total carbon emissions for that year alone. A study was conducted to quantify the greenhouse gas emission from stationary combustion from several power plants in Peninsular Malaysia, followed by proposal for the emission reduction strategies. For the GHG emissions assessment, the Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard and Intergovernmental Panel on Climate Change (IPCC) methodologies was adopted. Based on this study, the highest GHG emission intensity were from coal power plants which ranged from 0.67 – 0.85 tCO2/ MWh. The GHG emission intensity for natural gas power plants ranged from 0.38 – 0.78 tCO2/ MWh. The overall GHG emission intensity for all power plants studied was estimated to be 0.54 tCO2/ MWh. The large variations in CO2 emissions per MWh of electricity generated in fossil fuel power plants were due to differences in generation efficiency, fuel selection, technology, and plant age. In supporting Malaysia’s conditional commitment of 45% GHG emissions intensity reduction target against the country’s GDP, the emission reduction strategies up to 2025 were assessed using three key scenarios namely Business-As-Usual (BAU), Planning (PLAN) and Ambitious (AMB). Based on the analysis, the projection indicates that the emissions intensity for the power sector is about 0.79 tCO2/ MWh, 0.49 tCO2/ MWh, and 0.44 tCO2/ MWh under the BAU, PLN AMB scenarios respectively. Finally, GHG emission reduction potentials were also outlined in this paper.


2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Shamsuddin Shahid ◽  
Anil Minhans ◽  
Othman Che Puan

Malaysia has committed to reduce its greenhouse gas (GHG) emissions by up to 40% by the year 2020. The fact that transport sector of Malaysia shares a big portion of national GHG emissions; its role is paramount. The present study reviews the current state of GHG emission, the major technical and policy measures that can be adopted, and the measures that have been initiated in Malaysia for GHG emission reduction in transportation sector. Data related to road vehicles and GHG emission from road transportation are collected from open source databases and analyzed to reveal the present trends and possible future changes in GHG emission due to government initiatives. The result shows deceleration of GHG emission from transportation sector of Malaysia in recent years. However, the study reveals that the present measures may not be enough to reduce GHG emission up to the set target. Malaysia needs more prudent strategies for climate-friendly development of transportation to achieve sustainability goals. The study also examines the potential of Malaysia to reduce GHG and the measures that that can be initiated to streamline the effort towards GHG emission reduction are discussed.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 130
Author(s):  
Kerstin Jantke ◽  
Martina J. Hartmann ◽  
Livia Rasche ◽  
Benjamin Blanz ◽  
Uwe A. Schneider

Climate mitigation targets must involve the agricultural sector, which contributes 10%–14% of global anthropogenic greenhouse gas (GHG) emissions. To evaluate options for implementing mitigation measures in the agricultural sector, farmers’ knowledge, positions, and attitudes towards agricultural GHG emissions, their accounting, and reduction need to be understood. Using an online survey, we asked 254 German farmers about their motivation to reduce GHG emissions and their acceptance of possible regulation schemes. We examined differences between relevant farming sectors, i.e., conventional versus organic and livestock keeping versus crop-cultivating farms. Results show that German farmers are aware of climatic changes and feel a general commitment to reducing GHG emissions but lack sufficient information. We identified agricultural magazines as the most effective tool for disseminating relevant knowledge. German farmers would feel motivated to adopt climate-friendly farming styles if products were labeled accordingly and if they received subsidies and public acknowledgment for their effort. As long as there is no regulation of agricultural GHGs through taxes or subsidies, personal motivation is yet the strongest motivation for voluntary emission reduction. Our findings are timely for the further development of strategies and instruments that reduce agricultural GHG emission and account for the farmers’ views. The dataset is available for further investigations.


2014 ◽  
Vol 11 (8) ◽  
pp. 2287-2294 ◽  
Author(s):  
Z. L. Cui ◽  
L. Wu ◽  
Y. L. Ye ◽  
W. Q. Ma ◽  
X. P. Chen ◽  
...  

Abstract. Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha−1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha−1 and 4783 kg CO2 eq ha−1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha−1, and 3555 kg CO2 eq ha−1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha−1, and 3905 kg CO2 eq ha−1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.


2014 ◽  
Vol 1010-1012 ◽  
pp. 2094-2101
Author(s):  
Long Xi Han ◽  
Jia Jia Zhai ◽  
Lin Zhang

The opportunities and challenges in the field of Chinese renewable energy were analyzed through the impact of global greenhouse gas (GHG) emission reduction trade, especially CDM on Chinese renewable energy, combined with the enhancement of awareness of voluntary emission reduction, relationship between emission reduction trade and renewable energy, changes in the international trade environment and the rise of the domestic trading system. It is suggested that the renewable energy industry integrates with GHG emission reduction trading system in China and explores the huge double benefit of emission reduction and income increase with market means, providing a reference for the smooth implementation of nationwide CN ETS including varies industries in the carbon trading market in the future, and striving for the speaking right for China to set the marketing price of international GHG emission reduction trading in the future.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 45
Author(s):  
Philippe Dusser

GHG reductions are a major focus of the EU policy. Several regulations have been set in order to meet the EU commitments under the Paris Agreement with an overall reduction of 40% from 1990 level. For the transport sector which is responsible for around 20% of the total GHG emissions, the GHG reductions obligations have been translated by i) reinforced GHG reduction thresholds for biofuels into the recast Renewable Energy Directive RED II; ii) an ambitious target of 30% GHG emission reduction target from 2005 level in the Effort Sharing Regulation (ESR) common to “non-ETS sector” (not covered by the Emission Trading System – ETS) as agriculture, building, waste… and transport. Furthermore, other EU regulations directed to Cars, Vans as well as Heavy Duty Vehicles set GHG emission reduction targets for new vehicle up to 2030. Finally, in its communication “A Clean Planet for All” the EU Commission describes A Strategy for 2050 to achieve a carbon neutral economy. This article addresses also the case of the German “GHG quota” which is a national support system for biofuels and as such is parallel to the European obligations stemming from the RED II renewable energy mandates that are to be met by Germany.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4440 ◽  
Author(s):  
Wouter Schram ◽  
Atse Louwen ◽  
Ioannis Lampropoulos ◽  
Wilfried van Sark

In this research, the greenhouse gas (GHG) emission reduction potentials of electric vehicles, heat pumps, photovoltaic (PV) systems and batteries were determined in eight different countries: Austria, Belgium, France, Germany, Italy, the Netherlands, Portugal and Spain. Also, the difference between using prosuming electricity as a community (i.e., energy sharing) and prosuming it as an individual household was calculated. Results show that all investigated technologies have substantial GHG emission reduction potential. A strong moderating factor is the existing electricity generation mix of a country: the GHG emission reduction potential is highest in countries that currently have high hourly emission factors. GHG emission reduction potentials are highest in southern Europe (Portugal, Spain, Italy) and lowest in countries with a high share of nuclear energy (Belgium, France). Hence, from a European GHG emission reduction perspective, it has most impact to install PV in countries that currently have a fossil-fueled electricity mix and/or have high solar irradiation. Lastly, we have seen that energy sharing leads to an increased GHG emission reduction potential in all countries, because it leads to higher PV capacities.


Sign in / Sign up

Export Citation Format

Share Document