scholarly journals Trend analysis of temperature and precipitation in Trarza region of Mauritania

2018 ◽  
Vol 10 (3) ◽  
pp. 484-493 ◽  
Author(s):  
Ely Yacoub ◽  
Gokmen Tayfur

Abstract Trend analysis of annual temperature and precipitation time series data collected from three stations (Boutilimit (station 1), Nouakchott (station 2) and Rosso (station 3)) has been used to detect the impacts of climate change on water resources in Trarza region, Mauritania. The Mann–Kendall, the Spearman's rho, and the Şen trend test were used for the trend identification. Pettitt's test was used to detect the change point of the series while the Theil–Sen approach was used to estimate the magnitude of the slope in the series. For precipitation, two stations (1 and 3) indicated statistically significant increase in trends. In the case of temperature, almost all the stations show statistically significant increasing trends in the maximum, minimum, and average temperatures. The magnitude of precipitation detected by the Theil–Sen test for stations 1 and 3, respectively, was found to be at the rate of 2.93 and 3.35 mm/year at 5% significance level. The magnitude trend of temperature detected by the Theil–Sen approach was found to be at the rate of 0.2–0.4 °C per decade for almost all the stations. The change points of temperature trends detected by Pettitt test are found to be in the same year (1995) for all the stations.

2020 ◽  
Vol 3 (1) ◽  
pp. 37
Author(s):  
Toyi Maniki Diphagwe ◽  
Bernard Moeketsi Hlalele ◽  
Dibuseng Priscilla Mpakathi

The 2019/20 Australian bushfires burned over 46 million acres of land, killed 34 people and left 3500 individuals homeless. Majority of deaths and buildings destroyed were in New South Wales, while the Northern Territory accounted for approximately 1/3 of the burned area. Many of the buildings that were lost were farm buildings, adding to the challenge of agricultural recovery that is already complex because of ash-covered farmland accompanied by historic levels of drought. The current research therefore aimed at characterising veldfire risk in the study area using Keetch-Byram Drought Index (KBDI). A 39-year-long time series data was obtained from an online NASA database. Both homogeneity and stationarity tests were deployed using a non-parametric Pettitt’s and Dicky-Fuller tests respectively for data quality checks. Major results revealed a non-significant two-tailed Mann Kendall trend test with a p-value = 0.789 > 0.05 significance level. A suitable probability distribution was fitted to the annual KBDI time series where both Kolmogorov-Smirnov and Chi-square tests revealed Gamma (1) as a suitably fitted probability distribution. Return level computation from the Gamma (1) distribution using XLSTAT computer software resulted in a cumulative 40-year return period of moderate to high fire risk potential. With this low probability and 40-year-long return level, the study found the area less prone to fire risks detrimental to animal and crop production. More agribusiness investments can safely be executed in the Northern Territory without high risk aversion.


2021 ◽  
Vol 22 (1) ◽  
pp. 55-73
Author(s):  
Ali Mohammed Khalel Al-Shawaf ◽  
Tahira Yasmin

With the pace of development and competitiveness, innovation plays an important role to capture the market share. Various countries have effective strategies to enhance Research and Development (R&D) and exchange value added products in international market. So, based on this the aim of this research is to examine the role of R&D, industrial design and charges for intellectual property in innovative exports in South Korean economy. Time series data for the period 1998 to 2017, Ordinary Least Square (OLS) and Generalized Method of Moments (GMM) models are used to determine the dynamic interrelationship among the study variables. In summary, the overall results show that there is co-integration rank of in both trace test and value test at 1% significance level. Moreover, OLS and GMM findings depict that there is significant and positive coefficient for ID & RD which represent that they have positive impact on HT. Whereas, the IP displays a negative and significant relationship with high technology exports accordingly. Lastly, the diagnostic tests show that model is stable for the study time period and result is reliable. The current study also suggests some policy implications which can enhance innovative export products of South Korea while enhancing R&D.


2021 ◽  
Vol 15 (9) ◽  
pp. 3046-3049
Author(s):  
Abdulkadir Kaya

Introduction and Aim: It is an important issue that what kind of changes occur in the risks that people face in the face of emerging problems and the role of people in possible pandemics in the last twenty years and in the future. The solution of the problems that arise in the control and management of these risks attracts the attention of many researchers. In this study, the causality effect of the COVID-19 pandemic on risk appetites representing the attitudes and behaviors of securities investors. Materials and Methods: In the study; To represent the pandemic, weekly time series data of the number of COVID-19 cases (COVID) and the Risk Appetite index (RISK) announced by the Central Registry Agency for the period 30.03.2019-30.08.2021 were used. In order to determine the causality relationship, the Hatemi-J Causality test was performed. Results: It was determined that the negative shocks of the COVID variable were a cause of the positive shocks of the RISK variable at a statistical significance level of 1%. Conclusion and Suggestions: The effect of the pandemic process on the investment decisions of the investors is reduced, with the expectation that the economy and financial markets will improve, positively affecting the behavior and risk perceptions of the investors, and this expectation causes the investment behavior and risk appetite to increase. can be expressed. Keywords: COVID-19, Risk appetite, Pandemic, Hatemi-J


2018 ◽  
Vol 1 (1) ◽  
pp. 62-75
Author(s):  
Pradip Raj Poudel ◽  
Narayan Raj Joshi ◽  
Shanta Pokhrel

A study on effects of climate change on rice (Oryza sativa) production in Tharu communities of Dang district of Nepal was conducted in 2018A.D to investigate the perception and major adaptation strategies followed by Tharu farmers. The study areas were selected purposively. Cross-sectional data was collected using a household survey of 120 households by applying simple random sampling technique with lottery method for sample selection. Primary data were collected using semi-structured and pretested interview schedule, focus group discussion and key informants interview whereas monthly and annual time series data on temperature and precipitation over 21years (1996-2016) were collected from Department of Hydrology and Meteorology, Kathmandu as secondary data. Descriptive statistics and trend analysis were used to analyze the data. The ratio of male and female was found to be equal with higher literacy rate at study area than district. Most of the farmers depended on agriculture only for their livelihood where there was large variation in land distribution. Farmers had better access to FM/radio for agricultural extension information sources. The study resulted that Tharu farmers of Dang perceived all parameters of climate. Temperature and rainfall were the most changing component of climate perceived by farmers. The trend analysis of temperature data of Dang over 21 years showed that maximum, minimum and average temperature were increasing at the rate of 0.031°C, 0.021°C and 0.072°C per year respectively which supports the farmers perception whereas trend of rainfall was decreased with 7.56mm per year. The yearly maximum rainfall amount was increased by 1.15mm. The production of local indigenous rice varieties were decreasing while hybrid and improved rice varieties were increasing. The district rice production trend was increasing which support the farmer’s perception. The study revealed that there were climate change effects on paddy production and using various adaptation strategies to cope in Dang district.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 332 ◽  
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Balati Maihemuti ◽  
Bilal Emin ◽  
Michael Groll

The analysis of various characteristics and trends of precipitation is an essential task to improve the utilization of water resources. Lake Issyk-Kul basin is an upper alpine catchment, which is more susceptible to the effects of climate variability, and identifying rainfall variations has vital importance for water resource planning and management in the lake basin. The well-known approaches linear regression, Şen’s slope, Spearman’s rho, and Mann-Kendall trend tests are applied frequently to try to identify trend variations, especially in rainfall, in most literature around the world. Recently, a newly developed method of Şen-innovative trend analysis (ITA) provides some advantages of visual-graphical illustrations and the identification of trends, which is one of the main focuses in this article. This study obtained the monthly precipitation data (between 1951 and 2012) from three meteorological stations (Balykchy, Cholpon-Ata, and Kyzyl-Suu) surrounding the Lake Issyk-Kul, and investigated the trends of precipitation variability by applying the ITA method. For comparison purposes, the traditional Mann–Kendall trend test also used the same time series. The main results of this study include the following. (1) According to the Mann-Kendall trend test, the precipitation of all months at the Balykchy station showed a positive trend (except in January (Zc = −0.784) and July (Zc = 0.079)). At the Cholpon-Ata and Kyzyl-Suu stations, monthly precipitation (with the same month of multiple years averaged) indicated a decreasing trend in January, June, August, and November. At the monthly scale, significant increasing trends (Zc > Z0.10 = 1.645) were detected in February and October for three stations. (2) The ITA method indicated that the rising trends were seen in 16 out of 36 months at the three stations, while six months showed decreasing patterns for “high” monthly precipitation. According to the “low” monthly precipitations, 14 months had an increasing trend, and four months showed a decreasing trend. Through the application of the ITA method (January, March, and August at Balykchy; December at Cholpon-Ata; and July and December at Kyzyl-Suu), there were some significant increasing trends, but the Mann-Kendall test found no significant trends. The significant trend occupies 19.4% in the Mann-Kendall test and 36.1% in the ITA method, which indicates that the ITA method displays more positive significant trends than Mann–Kendall Zc. (3) Compared with the classical Mann-Kendall trend results, the ITA method has some advantages. This approach allows more detailed interpretations about trend detection, which has benefits for identifying hidden variation trends of precipitation and the graphical illustration of the trend variability of extreme events, such as “high” and “low” values of monthly precipitation. In contrast, these cannot be discovered by applying traditional methods.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 3-11 ◽  
Author(s):  
J. S. Pickett ◽  
J. D. Menietti ◽  
D. A. Gurnett ◽  
B. Tsurutani ◽  
P. M. Kintner ◽  
...  

Abstract. Bipolar pulses of ~ 25-100 µs in duration have been observed in the wave electric field data obtained by the Wideband plasma wave instrument on the Cluster spacecraft in the dayside magnetosheath. These pulses are similar in almost all respects to those observed on several spacecraft over the last few years. They represent solitary potential structures, and in this case, electron phase space holes. When the time series data containing the bipolar pulses on Cluster are transformed to the frequency domain by a windowed FFT, the pulses appear as typical broad-band features, extending from the low-frequency cutoff of the bandpass filter, ~ 1 kHz, up to as great as 20-40 kHz in some cases, with decreasing intensity as the frequency increases. The upper frequency cutoff of the broad band is an indication of the individual pulse durations (1/f). The solitary potential structures are detected when the local magnetic field is contained primarily in the spin plane, indicating that they propagate along the magnetic field. Their frequency extent and intensity seem to increase as the angle between the directions of the magnetic field and the plasma flow decreases from 90°. Of major significance is the finding that the overall profile of the broad-band features observed simultaneously by two Cluster spacecraft, separated by a distance of over 750 km, are strikingly similar in terms of onset times, frequency extent, intensity, and termination. This implies that the generation region of the solitary potential structures observed in the magnetosheath near the bow shock is very large and may be located at or near the bow shock, or be connected with the bow shock in some way.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 842 ◽  
Author(s):  
Naveed Ahmed ◽  
Genxu Wang ◽  
Martijn J. Booij ◽  
Adeyeri Oluwafemi ◽  
Muhammad Zia-ur-Rahman Hashmi ◽  
...  

The headwaters of the Yangtze River are located on the Qinghai Tibetan Plateau, which is affected by climate change. Here, treamflow trends for Tuotuohe and Zhimenda sub-basins and relations to temperature and precipitation trends during 1961–2015 were investigated. The modified Mann–Kendall trend test, Pettitt test, wavelet analysis, and multivariate correlation analysis was deployed for this purpose. The temperature and precipitation significantly increased for each sub-basin, and the temperature increase was more significant in Tuotuohe sub-basin as compared to the Zhimenda sub-basin. A statistically significant periodicity of 2–4 years was observed for both sub-basins in different time spans. Higher flow periodicities for Tuotuohe and Zhimenda sub-basin were found after 1991 and 2004, respectively, which indicates that these are the change years of trends in streamflows. The influence of temperature on streamflow is more substantial in Tuotuohe sub-basin, which will ultimately impact the melting of glaciers and snowmelt runoff in this sub-basin. Precipitation plays a more critical role in the Zhimenda streamflow. Precipitation and temperature changes in the headwaters of the Yangtze River will change the streamflow variability, which will ultimately impact the hydropower supply and water resources of the Yangtze Basin. This study contributes to the understanding of the dynamics of the hydrological cycle and may lead to better hydrologic system modeling for downstream water resource developments.


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 136
Author(s):  
Dol Raj Luitel ◽  
Pramod K. Jha ◽  
Mohan Siwakoti ◽  
Madan Lall Shrestha ◽  
Rangaswamy Munniappan

The Chitwan Annapurna Landscape (CHAL) is the central part of the Himalayas and covers all bioclimatic zones with major endemism of flora, unique agro-biodiversity, environmental, cultural and socio-economic importance. Not much is known about temperature and precipitation trends along the different bioclimatic zones nor how changes in these parameters might impact the whole natural process, including biodiversity and ecosystems, in the CHAL. Analysis of daily temperature and precipitation time series data (1970–2019) was carried out in seven bioclimatic zones extending from lowland Terai to the higher Himalayas. The non-parametric Mann-Kendall test was applied to determine the trends, which were quantified by Sen’s slope. Annual and decade interval average temperature, precipitation trends, and lapse rate were analyzed in each bioclimatic zone. In the seven bioclimatic zones, precipitation showed a mixed pattern of decreasing and increasing trends (four bioclimatic zones showed a decreasing and three bioclimatic zones an increasing trend). Precipitation did not show any particular trend at decade intervals but the pattern of rainfall decreases after 2000AD. The average annual temperature at different bioclimatic zones clearly indicates that temperature at higher elevations is increasing significantly more than at lower elevations. In lower tropical bioclimatic zone (LTBZ), upper tropical bioclimatic zone (UTBZ), lower subtropical bioclimatic zone (LSBZ), upper subtropical bioclimatic zone (USBZ), and temperate bioclimatic zone (TBZ), the average temperature increased by 0.022, 0.030, 0.036, 0.042 and 0.051 °C/year, respectively. The decade level temperature scenario revealed that the hottest decade was from 1999–2009 and average decade level increases of temperature at different bioclimatic zones ranges from 0.2 to 0.27 °C /decade. The average temperature and precipitation was found clearly different from one bioclimatic zone to other. This is the first time that bioclimatic zone level precipitation and temperature trends have been analyzed for the CHAL. The rate of additional temperature rise at higher altitudes compared to lower elevations meets the requirements to mitigate climate change in different bioclimatic zones in a different ways. This information would be fundamental to safeguarding vulnerable communities, ecosystem and relevant climate-sensitive sectors from the impact of climate change through formulation of sector-wise climate change adaptation strategies and improving the livelihood of rural communities.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 531 ◽  
Author(s):  
Dostdar Hussain ◽  
Chung-Yen Kuo ◽  
Abdul Hameed ◽  
Kuo-Hsin Tseng ◽  
Bulbul Jan ◽  
...  

The Indus River, which flows through China, India, and Pakistan, is mainly fed by melting snow and glaciers that are spread across the Hindukush–Karakoram–Himalaya Mountains. The downstream population of the Indus Plain heavily relies on this water resource for drinking, irrigation, and hydropower generation. Therefore, its river runoff variability must be properly monitored. Gilgit Basin, the northwestern part of the Upper Indus Basin, is selected for studying cryosphere dynamics and its implications on river runoff. In this study, 8-day snow products (MOD10A2) of moderate resolution imaging spectroradiometer, from 2001 to 2015 are selected to access the snow-covered area (SCA) in the catchment. A non-parametric Mann–Kendall test and Sen’s slope are calculated to assess whether a significant trend exists in the SCA time series data. Then, data from ground observatories for 1995–2013 are analyzed to demonstrate annual and seasonal signals in air temperature and precipitation. Results indicate that the annual and seasonal mean of SCA show a non-significant decreasing trend, but the autumn season shows a statistically significant decreasing SCA with a slope of −198.36 km2/year. The annual mean temperature and precipitation show an increasing trend with highest values of slope 0.05 °C/year and 14.98 mm/year, respectively. Furthermore, Pearson correlation coefficients are calculated for the hydro-meteorological data to demonstrate any possible relationship. The SCA is affirmed to have a highly negative correlation with mean temperature and runoff. Meanwhile, SCA has a very weak relation with precipitation data. The Pearson correlation coefficient between SCA and runoff is −0.82, which confirms that the Gilgit River runoff largely depends on the melting of snow cover rather than direct precipitation. The study indicates that the SCA slightly decreased for the study period, which depicts a possible impact of global warming on this mountainous region.


2010 ◽  
Vol 663 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Sonja Peters ◽  
Hans-Gerd Janssen ◽  
Gabriel Vivó-Truyols

Sign in / Sign up

Export Citation Format

Share Document