scholarly journals Risk assessment of possible impacts of climate change and irrigation on wheat yield and quality with a modified CERES-Wheat model

Author(s):  
Jianchao Liu

Abstract The effects of climate change on yield and quality in different climate regions have high uncertainty. Risk assessment is an effective measure to assess the seriousness of the projected impacts for decision-makers. A modified quality model was used to simulate integrated impacts of climate change, environment, and management on wheat yield and quality. Then, the Canadian Earth System Model version 5 (CanESM5) was used to forecast the daily meteorological data, and the Statistical Downscaling Model (SDSM V5.2) was used for downscaling. The modified CERES-Wheat was combined with the forecasted meteorological data to simulate the future wheat yield and grain protein concentration (GPC). The risk to wheat yield and quality in three climatic regions in Northwest China under two climate change scenarios of the CanESM5 was assessed. The average temperature increased by 0.22–3.34 °C, and precipitation increased by 10–60 mm from 2018 to 2100. Elevated temperature and precipitation had positive effects on the yields. The risk to yield in most regions with climate change decreased by 3.8–25.1%. The risk to GPC in all regions with climate change decreased by 7.3–27.2%. Irrigation decreased the risk to yield greatly but had different effects in the three climatic regions. The risk to yield with irrigation decreased by 37.7–52.1%. In contrast to previous studies, in this study, the risk to GPC with irrigation substantially increased by 25.8–28.9% in humid regions and 3.9–8.8% in subhumid regions and decreased by 37.7–52.1% in semiarid regions. The irrigation should be discreetly applied for different climatic regions to combat climate change.

Author(s):  
Jianchao Liu ◽  
Wenbin Yao ◽  
Zhanglin Peng ◽  
Hangjun Wang

The effects of climate change on yield and quality for different climate regions had high uncertainty. Risk assessment is an effective measure to assess the seriousness of the projected impacts for decision-makers. The modified quality model was used to simulate integrated impacts of climate change, environment and management on wheat yield and quality. Then, the Canadian Earth System Model (CanESM2) was used to forecast the daily meteorological data, and Statistical Down Scaling Model was used for downscaling. CERES-Wheat was combined with the forecasted meteorological data to simulate the future wheat yield and grain protein concentration (GPC). The risk of wheat yield and quality in three climatic regions of Shaanxi combined with two climate change scenarios of CanESM2 were assessed. Temperature increased 0.22-3.34 °C and precipitation increased 10-60 mm for RCP4.5 and RCP8.5. Elevated temperature and precipitation had positive effects on yield in all regions. The yield risk of most regions with climate change decreased 3.8%-25.1%. The GPC risk of all regions with climate change decreased 7.3%-27.2%. Irrigation decreased yield risk greatly in all regions, while had totally different effects for the three climatic regions. Yield risk with irrigation decreased 37.7%-52.1% in different climate. In contrast to previous studies, GPC risk with irrigation increased greatly 25.8%-28.9% in humid region, 3.9%-8.8% in sub-humid region, and decreased 37.7%-52.1% in semi-arid region. Climate change decreased yield risk and GPC risk together. While irrigation decreased yield risk greatly in all regions, had totally different effects for the three climatic regions.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


2015 ◽  
Vol 03 (04) ◽  
pp. 1550031 ◽  
Author(s):  
Yan ZHENG ◽  
Xiaoyu ZHANG

Climate change has become an important driving factor for regional migration. This paper projects the crop yields in the typical sub-regions of Ningxia with SRES-A1B climate modeling method, and makes an expert evaluation on future risk of climate-induced migration based on IPCC risk framework. The paper argues that there would be an increasing rural-urban migration flow from the central and southern areas to the northern area of Ningxia in the near future, mainly because of the trend of a decreasing climate carrying capacity and an expanding poverty population in those vulnerable areas to climate change. This paper concludes that well-designed relocation plans would help to facilitate the migration as well as to promote the urbanization in Ningxia, taking into consideration of future climate change scenarios and risk assessment on climate-induced migration.


2011 ◽  
Vol 59 (5) ◽  
pp. 440 ◽  
Author(s):  
M. J. Laidlaw ◽  
W. J. F. McDonald ◽  
R. John Hunter ◽  
D. A. Putland ◽  
R. L. Kitching

The potential for anthropogenic climate change to impact upon native vegetation has emphasised the need for monitoring and for dynamic management regimes. Potential impacts are numerous, but will likely include the upslope movement of species’ ranges and increasing in situ turnover (compositional change) within plant assemblages. By assessing the potential impacts of climate change on subtropical rainforest communities in south-east Queensland through the establishment of an altitudinal transect, we aimed to establish the baseline composition of the vegetation and to develop two hypotheses against which climate change scenarios can be tested. The study identified existing high levels of turnover across tree assemblages from low to mid elevations absent at higher elevations and we predict: (1) subtropical rainforest communities which currently sit at the level of the cloud base (800–900 m) will experience increasing floristic turnover, and (2) novel vegetation communities will emerge as species move upslope in response to a changing climate. Monitoring floristic turnover as a surrogate for shifting climatic habitats may be confounded both by a lack of knowledge regarding the underlying turnover rates of rainforest communities and by the disparity in temporal scales of tree community turnover and accelerating anthropogenic climate change. The identification of ‘break points’ in the relationship between current vegetation communities and gradients of precipitation and temperature will allow better direction of monitoring efforts.


2016 ◽  
Vol 155 (3) ◽  
pp. 379-393 ◽  
Author(s):  
A. ARAYA ◽  
I. KISEKKA ◽  
A. GIRMA ◽  
K. M. HADGU ◽  
F. N. TEGEBU ◽  
...  

SUMMARYWheat is an important crop in the highlands of Northern Ethiopia and climate change is expected to be a major threat to wheat productivity. However, the potential impacts of climate change and adaptation on wheat yield has not been documented for this region. Wheat field experiments were carried out during the 2011–2013 cropping seasons in Northern Ethiopia to: (1) calibrate and evaluate Agricultural Production Systems sIMulator (APSIM)-wheat model for exploring the impacts of climate change and adaptation on wheat yield; (2) explore the response of wheat cultivar/s to possible change in climate and carbon dioxide (CO2) under optimal and sub-optimal fertilizer application and (3) assess the impact of climate change and adaptation practices on wheat yield based on integration of surveyed field data with climate simulations using multi-global climate models (GCMs; for short- and mid-term periods) for the Hintalo-Wajrat areas of Northern Ethiopia. The treatments were two levels of fertilizer (optimal and zero fertilization); treatments were replicated three times and arranged in a randomized complete block design. All required information for model calibration and evaluation were gathered from experimental studies. In addition, a household survey was conducted in 2012 in Northern Ethiopia. Following model calibration and performance testing, response of wheat to various nitrogen (N) fertilizer rates, planting date, temperature and combinations of other climate variables and CO2 were assessed. Crop simulations were conducted with future climate scenarios using 20 different GCMs and compared with a baseline. In addition, simulations were carried out using climate data from five different GCM with and without climate change adaptation practices. The simulated yield showed clear responses to changes in temperature, N fertilizer and CO2. Regardless of choice of cultivar, increasing temperatures alone (by up to 5 °C compared with the baseline) resulted in reduced yield while the addition of other factors (optimal fertilizer with elevated CO2) resulted in increased yield. Considering optimal fertilizer (64 kg/ha N) as an adaptation practice, wheat yield in the short-term (2010–2039) and mid-term (2040–2069) may increase at least by 40%, compared with sub-optimal N levels. Assuming CO2 and present wheat management is unchanged, simulation results based on 20 GCMs showed that median wheat yields will reduce by 10% in the short term and by 11% in the mid-term relative to the baseline data, whereas under changed CO2 with present management, wheat yield will increase slightly, by up to 8% in the short term and by up to 11% in the mid-term period, respectively. Wheat yield will substantially increase, by more than 100%, when simulated based on combined use of optimal planting date and fertilizer applications. Increased temperature in future scenarios will cause yield to decline, whereas CO2 is expected to have positive impacts on wheat yield.


2014 ◽  
Vol 955-959 ◽  
pp. 3777-3782 ◽  
Author(s):  
Xiao Feng Zhao ◽  
Bin Le Lin

We evaluated land suitability for Jatropha cultivation at a global scale under current and future climate scenarios. Areas that are suitable for Jatropha cultivation include southern South America, the west and southeast coasts of Africa, the north of South Asia, and the north and south coasts of Australia. In the predicted climate change scenarios, areas near the equator become less suitable for Jatropha cultivation, and areas further from the equator become more suitable. Our analyses suggest that the rank order of the six climate change scenarios, from the smallest to the largest effects on Jatropha cultivation, was as follows: B1, A1T/B2, A1B, A2, and A1FI.


2017 ◽  
Vol 9 (1) ◽  
pp. 156-177 ◽  
Author(s):  
Hossein Malekinezhad ◽  
Fatemeh Barzegai Banadkooki

Abstract This paper analyzes the impacts of climate change and human pressures on Yazd-Ardakan aquifer using the Hadley Centre Coupled Model, version 3 (HADCM3) circulation Model and A2 emission scenario. Water levels in the study aquifer were simulated using three-dimensional finite-difference groundwater model (MODFLOW 2000) with GMS 8.3 as pre- and postprocessing software. Input for groundwater recharge time series under the climate change scenarios were derived using a regression equation based on the cumulative deviation from mean rainfall using MATLAB. Human pressures on the aquifer were modeled through climate change impacts on water requirements of cultivated areas. Three scenarios were simulated to represent the effects of climate change and human pressures on aquifer storage and hydraulic head. Climate change and human pressures (scenario 1) will reduce aquifer storage and result in decreasing hydraulic head by −0.56 m year−1. Reduction in pumping water under scenario 2 (irrigation system modification) and scenario 3 (irrigation system modification and cropping patterns) will result in groundwater level fluctuation of about −0.32 and 0.08 m year−1, respectively. Scenario 3 is capable of restoring and protecting the groundwater resources in Yazd-Ardakan aquifer. The results of this study are useful to obtain sustainable groundwater management in Yazd-Ardakan aquifer.


2012 ◽  
Vol 34 (2) ◽  
pp. 51-61
Author(s):  
Leszek Kuchar ◽  
IWAŃSKI SŁAWOMIR ◽  
Leszek Jelonek ◽  
Wiwiana Szalińska

Abstract Climate change, regardless of the causes shaping its rate and direction, can have far-reaching environmental, economic and social impact. A major aspect that might be transformed as a result of climate change are water resources of a catchment. The article presents a possible method of predicting water resource changes by using a meteorological data generator and classical hydrological models. The assessment of water resources in a catchment for a time horizon of 30-50 years is based on an analysis of changes in annual runoff that might occur in changing meteorological conditions. The model used for runoff analysis was the hydrological rainfall-runoff NAM model. Daily meteorological data essential for running the hydrological model were generated by means of SWGEN model. Meteorological data generated for selected climate change scenarios (GISS, CCCM and GFDL) for the years 2030 and 2050 enabled analysing different variants of climate change and their potential effects. The presented results refer to potential changes in water resources of the Kaczawa catchment. It should be emphasized that the obtained results do not say which of the climate change scenarios is more likely, but they present the consequences of climate change described by these scenarios.


2012 ◽  
Vol 15 (4) ◽  
pp. 18-32
Author(s):  
Khoi Nguyen Dao

In this paper, the author investigated the effects of climate change on streamflow in Srepok watershed. The climate change scenarios were built by downscaling method (delta change method) based on the outputs of MIROC 3.2 Hires GCM. The SWAT (Soil and Water Assessment Tool) model was used to investigate the impacts on streamflow under climate change scenarios. The calibration and validation results showed that the SWAT model was able to simulate the streamflow well. Their difference in simulating the streamflow under future climate scenarios was also investigated. Results indicated a 1.3-3.9oC increase in annual temperature and a -4.4 to -0.5% decreases in annual precipitation corresponded to a decrease in streamflow of about -7.6 to -2.8%. The large decrease in precipitation and runoff are observed in the dry season.


Sign in / Sign up

Export Citation Format

Share Document