scholarly journals Relationship between meteorological and hydrological droughts in the upstream regions of the Lancang–Mekong River

Author(s):  
Jiqiu Li ◽  
Yinfei Wang ◽  
Yungang Li ◽  
Wenting Ming ◽  
Yunshu Long ◽  
...  

Abstract Information on the relationship between meteorological drought (MD) and hydrological drought (HD) can serve as the basis for early warning and mitigation of HD. In this study, the standardized precipitation index and standardized streamflow index were applied to characterize MD and HD, respectively, and the evolution characteristics of MD and HD were assessed in the upstream regions of the Lancang–Mekong River (ULMR) from 1961 to 2015. Furthermore, the relationship between MD and HD was investigated using the Pearson correlation and wavelet analysis. The results revealed that (1) there was no significant change in the annual precipitation and streamflow; however, the ULMR experienced successive alternations of wet and dry episodes; (2) the average duration and magnitude of MD and HD increased with an increase in the time scale, while the duration and magnitude of MD lengthened and amplified in HD; (3) MD more likely propagated to HD as the time scale increased, and the propagation time exhibited marked seasonality, which was shorter in the wet season and longer in the dry season; and (4) there was a positive correlation between MD and HD; these two types of drought exhibited similar resonance frequency and phase-shift characteristics, and HD lagged behind MD.

2018 ◽  
Vol 66 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Miriam Fendeková ◽  
Tobias Gauster ◽  
Lívia Labudová ◽  
Dana Vrablíková ◽  
Zuzana Danáčová ◽  
...  

Abstract Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.


2018 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Yotta Autika ◽  
Aras Mulyadi ◽  
Yusni Ikhwan Siregar

Riau is one of the most vulnerable provinces to forest and land fires in Indonesia. The potency for forest and land fires is inseparable from the presence of peatlands and exacerbated by drought. The purpose of this research is to know the characteristics of meteorological drought using SPI (Standardized Precipitation Index) method and its relation with forest and peatland fire as one of disaster management effort in Riau Province. The data used in this research are monthly rainfall data from meteorology station and rainfall posts of BMKG, hotspot data from NOAA satellite, map of Forest Use Agreement (TGHK), peat land map and land use map. Analysis of drought characteristics was done by calculating monthly SPI-1 then determining the maximum duration, intensity, severity and drought exposure. Determination of the severity of the drought by weighting and suspension method was based on duration and intensity while drought exposure was done by overlaying the map of the severity of the drought with the land use map. Meanwhile, to know the potential of forest and land fires began with the selection of hotspots on peatlands and forest areas every month then created a graph of the relationship of meteorological drought with the number of hotspots. Then, to see the relationship of drought distribution to the distribution of hotspots in dry season (MK) and wet season (MH) of 2015 was done by overlaying cover the drought distribution with hotspot distribution. The result shows that drought characteristic in the most of Riau province has maximum duration around 4-6 months, dry category of intensity, high category of severity with exposure area in paddy field, field, habitation, and plantation. Then, negative SPI Index (dry condition) has potential to increase the number of hotspots otherwise positive SPI index (wet condition) leads to low occurrence of hotspot. The drought distribution in the dry season (July, August, September) of 2015 triggers the number of hotspots during drought conditions, while in wet season (April, November, December) of 2015 are dominated by normal conditions, some areas are dry and wet, resulting in lower hotspots distribution compared to the dry season.


2021 ◽  
Vol 325 ◽  
pp. 01017
Author(s):  
Qooi Insanu Putra ◽  
Emilya Nurjani

Gunungkidul Regency is known as an area that often experiences drought. On the other hand, Gunungkidul Regency is also the regency with the highest amount of rice production in the Special Region of Yogyakarta Province. Rainfed paddy farming is the most widely developed type of paddy in Gunungkidul Regency where irrigation needs are determined by rainfall. Decreased rainfall that triggers meteorological drought can disrupt rainfed-based agriculture. This study aims to analyze the distribution of meteorological drought and analyze the impact of meteorological drought on rainfed paddy productivity in Gunungkidul Regency during the period 2001 – 2019. Meteorological drought identification was carried out using the Standardized Precipitation Index (SPI). Results of the SPI classification was mapped using Spline-Tension interpolation for spatial analysis of the distribution of meteorological drought. Spatial analysis and comparison graphs were used to analyze the relationship between drought and rainfed paddy productivity. The widest meteorological drought in Gunungkidul Regency occurred in November 2006. The highest frequency of drought events occurred in Paliyan Sub-district for 50 months while the lowest occurred in Ponjong Sub-district for 30 months. Most sub-districts in Gunungkidul Regency have a positive relationship between meteorological drought. Most of rainfed paddy productivity decreased when El Nino occurred.


2020 ◽  
Vol 6 (10) ◽  
pp. 1864-1875 ◽  
Author(s):  
Donny Harisuseno

Drought monitoring, including its severity, spatial, and duration is essential to enhance resilience towards drought, particularly for overcoming drought risk management and mitigation plan. The present study has an objective to examine the suitability of the Standardized Precipitation Index (SPI) and Percent of Normal Index (PN) on assessing drought event by analyzing their relationship with the Southern Oscillation Index (SOI). The monthly rainfall data over twenty years of the observation period were used as a basis for data input in the drought index calculation. The statistical association analyses, included the Pearson Correlation (r), Kendal tau (τ), and Spearman rho (rs) used to assess the relationship between the monthly drought indexes and SOI. The present study confirmed that the SPI showed a more consistent and regular pattern relationship with SOI basis which was indicated by a moderately high determination coefficient (R2) of 0.74 and the magnitude of r, τ, and rs that were of 0.861, 0.736, and 0.896, respectively. Accordingly, the SPI showed better compatibility than the PN for estimating drought characteristics. The study also revealed that the SOI data could be used as a variable to determine the reliability of drought index results.


2021 ◽  
Author(s):  
Hadri Abdessamad ◽  
Saidi Mohamed El Mehdi ◽  
Boudhar Abdelghani

<p>During the last few decades, the frequency of drought has significantly increased in Morocco especially for arid and semi-arid regions, leading to a rising of several environmental and economic issues. In this work, we analyse the spatial and temporal relationship between vegetation activity and drought severity at different moments of the year, across an arid area in the western Haouz plain in Morocco. Our approach is based on the use of a set of more than thirty satellite Landsat images data acquired for the period from 2008 to 2017, combined with the Standardized Precipitation Index (SPI) at different time scales and Standardized water-level Index (SWI). The Mann-Kendall and Sen’s slopes methods were used to estimate SPI trends and the Pearson correlation between NDVI and SPI were calculated to assess the sensitivity of vegetation types to drought. Results demonstrated that SPI experienced an overall upward trend in the Chichaoua-Mejjate region, except for 3-months time scale SPI in summer. The vegetation activity is largely controlled by the drought with clear differences between seasons and timesclaes at which drought is assessed. Positives correlations between the NDVI and SPI are dominant across the entire study area except in June when almost half of correlations is negative. More than 80% of the study domain exhibit a correlation exceeding 0.4 for SPI3 and SPI6 in March. Importantly, this study stresses that the irrigation status of land can introduce some uncertainties on the remote sensing drought monitoring. A weak correlation between the SPI and the SWI was observed at different time-scale. The fluctuations of the piezometric levels are strongly affected by the anthropogenic overexploitation of aquifers and proliferation of irrigated plots.</p>


2009 ◽  
Vol 48 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
Steven M. Quiring

Abstract Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may lead to over- or underestimating true drought severity. Therefore, it is more appropriate to use an objective location-specific method for defining operational drought thresholds.


2018 ◽  
Vol 22 (9) ◽  
pp. 4649-4665 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socioeconomic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices (SIs) of soil moisture, runoff, and streamflow from an ensemble of global hydrological models (GHMs) forced by a consistent meteorological dataset. Drought propagation is strongly related to climate types, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models (LSMs) than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 127 in situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 10 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2020 ◽  
Vol 33 (9) ◽  
pp. 3635-3661 ◽  
Author(s):  
Jonathan Spinoni ◽  
Paulo Barbosa ◽  
Edoardo Bucchignani ◽  
John Cassano ◽  
Tereza Cavazos ◽  
...  

AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.


Sign in / Sign up

Export Citation Format

Share Document