scholarly journals A public health evaluation of recreational water impairment

2006 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Jeffrey A. Soller ◽  
Adam W. Olivieri ◽  
Joseph N. S. Eisenberg ◽  
John F. DeGeorge ◽  
Robert C. Cooper ◽  
...  

Water quality objectives for body contact recreation (REC-1) in Newport Bay, CA are not being attained. To evaluate the health implications of this non-attainment, a comprehensive health-based investigation was designed and implemented. Bacterial indicator data indicate that exceedances of the water quality objectives are temporally sporadic, geographically limited and most commonly occur during the time of the year and/or in areas of the bay where the REC-1 use is low or non-existent. A disease transmission model produced simulated risk estimates for recreation in the Bay that were below levels considered tolerable by the US EPA (median estimate 0.9 illnesses per 1,000 recreation events). Control measures to reduce pathogen loading to Newport Bay are predicted to reduce risk by an additional 16% to 50%. The results of this study indicate that interpreting the public health implications of fecal indicator data in recreational water may require a more rigorous approach than is currently used.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary McCarthy ◽  
Yanyu Xiao ◽  
Francesca Scarabel ◽  
Biao Tang ◽  
Nicola Luigi Bragazzi ◽  
...  

AbstractSocial contact mixing plays a critical role in influencing the transmission routes of infectious diseases. Moreover, quantifying social contact mixing patterns and their variations in a rapidly evolving pandemic intervened by changing public health measures is key for retroactive evaluation and proactive assessment of the effectiveness of different age- and setting-specific interventions. Contact mixing patterns have been used to inform COVID-19 pandemic public health decision-making; but a rigorously justified methodology to identify setting-specific contact mixing patterns and their variations in a rapidly developing pandemic, which can be informed by readily available data, is in great demand and has not yet been established. Here we fill in this critical gap by developing and utilizing a novel methodology, integrating social contact patterns derived from empirical data with a disease transmission model, that enables the usage of age-stratified incidence data to infer age-specific susceptibility, daily contact mixing patterns in workplace, household, school and community settings; and transmission acquired in these settings under different physical distancing measures. We demonstrated the utility of this methodology by performing an analysis of the COVID-19 epidemic in Ontario, Canada. We quantified the age- and setting (household, workplace, community, and school)-specific mixing patterns and their evolution during the escalation of public health interventions in Ontario, Canada. We estimated a reduction in the average individual contact rate from 12.27 to 6.58 contacts per day, with an increase in household contacts, following the implementation of control measures. We also estimated increasing trends by age in both the susceptibility to infection by SARS-CoV-2 and the proportion of symptomatic individuals diagnosed. Inferring the age- and setting-specific social contact mixing and key age-stratified epidemiological parameters, in the presence of evolving control measures, is critical to inform decision- and policy-making for the current COVID-19 pandemic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Epidemiologia ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 207-226
Author(s):  
Anthony Morciglio ◽  
Bin Zhang ◽  
Gerardo Chowell ◽  
James M. Hyman ◽  
Yi Jiang

The COVID-19 pandemic has placed an unprecedented burden on public health and strained the worldwide economy. The rapid spread of COVID-19 has been predominantly driven by aerosol transmission, and scientific research supports the use of face masks to reduce transmission. However, a systematic and quantitative understanding of how face masks reduce disease transmission is still lacking. We used epidemic data from the Diamond Princess cruise ship to calibrate a transmission model in a high-risk setting and derive the reproductive number for the model. We explain how the terms in the reproductive number reflect the contributions of the different infectious states to the spread of the infection. We used that model to compare the infection spread within a homogeneously mixed population for different types of masks, the timing of mask policy, and compliance of wearing masks. Our results suggest substantial reductions in epidemic size and mortality rate provided by at least 75% of people wearing masks (robust for different mask types). We also evaluated the timing of the mask implementation. We illustrate how ample compliance with moderate-quality masks at the start of an epidemic attained similar mortality reductions to less compliance and the use of high-quality masks after the epidemic took off. We observed that a critical mass of 84% of the population wearing masks can completely stop the spread of the disease. These results highlight the significance of a large fraction of the population needing to wear face masks to effectively reduce the spread of the epidemic. The simulations show that early implementation of mask policy using moderate-quality masks is more effective than a later implementation with high-quality masks. These findings may inform public health mask-use policies for an infectious respiratory disease outbreak (such as one of COVID-19) in high-risk settings.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd6370 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ruth Zimmermann ◽  
Navina Sarma ◽  
Doris Thieme-Thörel ◽  
Katharina Alpers ◽  
Tanja Artelt ◽  
...  

Two COVID-19 outbreaks occurred in residential buildings with overcrowded housing conditions in the city of Göttingen in Germany during May and June 2020, when COVID-19 infection incidences were low across the rest of the country, with a national incidence of 2.6/100,000 population. The outbreaks increased the local incidence in the city of Göttingen to 123.5/100,000 in June 2020. Many of the affected residents were living in precarious conditions and experienced language barriers. The outbreaks were characterized by high case numbers and attack rates among the residents, many asymptomatic cases, a comparatively young population, and substantial outbreak control measures implemented by local authorities. We analyzed national and local surveillance data, calculated age-, and gender-specific attack rates and performed whole genome sequencing analysis to describe the outbreak and characteristics of the infected population. The authorities' infection control measures included voluntary and compulsory testing of all residents and mass quarantine. Public health measures, such as the general closure of schools and a public space as well as the prohibition of team sports at local level, were also implemented in the district to limit the outbreaks locally. The outbreaks were under control by the end of June 2020. We describe the measures to contain the outbreaks, the challenges experienced and lessons learned. We discuss how public health measures can be planned and implemented through consideration of the needs and vulnerabilities of affected populations. In order to avoid coercive measures, barrier-free communication, with language translation when needed, and consideration of socio-economic circumstances of affected populations are crucial for controlling infectious disease transmission in an outbreak effectively and in a timely way.


2020 ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

Abstract To date, many studies have argued the potential impact of public health interventions on flattening the epidemic curve of SARS-CoV-2. Most of them have focused on simulating the impact of interventions in a region of interest by manipulating contact patterns and key transmission parameters to reflect different scenarios. Our study looks into the evolution of the daily effective reproduction number during the epidemic via a stochastic transmission model. We found this measure (although model-dependent) provides an early signal of the efficacy of containment measures. This epidemiological parameter when updated in real-time can also provide better predictions of future outbreaks. Our results found a substantial variation in the effect of public health interventions on the dynamic of SARS-CoV-2 transmission over time and across countries, that could not be explained solely by the timing and number of the adopted interventions. This suggests that further knowledge about the idiosyncrasy of their implementation and effectiveness is required. Although sustained containment measures have successfully lowered growth in disease transmission, more than half of the 101 studied countries failed to maintain the effective reproduction number close to or below 1. This resulted in continued growth in reported cases. Finally, we were able to predict with reasonable accuracy which countries would experience outbreaks in the next 30 days.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Terence Epule Epule ◽  
Changhui Peng ◽  
Moto Mirielle Wase ◽  
Ndiva Mongoh Mafany

2015 ◽  
Vol 1 (3) ◽  
pp. 306-315 ◽  
Author(s):  
Qian Zhang ◽  
Xia He ◽  
Tao Yan

Fecal contamination of coastal recreational water can adversely impact the public health and economic well-being of many coastal communities.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 598
Author(s):  
Elaine Meade ◽  
Mark Anthony Slattery ◽  
Mary Garvey

Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.


2021 ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

Abstract BackgroundThis has been the first time in recent history when extreme measures that have deep and wide impact on our economic and social systems, such as lock downs and border closings, have been adopted at a global scale. These measures have been taken in response to the severe acute respiratory syndrome coronavirus SARS-CoV-2 pandemic, declared a Public Health Emergency of International Concern on 30 January 2020. Epidemic models are being used by governments across the world to inform social distancing and other public health strategies to reduce the spread of the virus. These models, which vary widely in their complexity, simulate interventions by manipulating model parameters that control social mixing, healthcare provision and other behavioral and environmental processes of disease transmission and recovery. The validity of these parameters is challenged by the uncertainty of the impact on disease transmission from socio-economic factors and public health interventions. Although sensitivity of the models to small variations in parameters are often carried out, the forecasting accuracy of these models is rarely investigated during an outbreak.MethodsWe fitted a stochastic transmission model on reported cases, recoveries and deaths associated with the infection of SARS-CoV-2 across 101 countries that had adopted at least one social-distancing policy by 15 May 2020. The dynamics of disease transmission was represented in terms of the daily effective reproduction number (Rt). Countries were grouped according to their initial temporal Rt patterns using a hierarchical clustering algorithm. We then computed the time lagged cross correlation among the daily number of policies implemented (policy volume), the daily effective reproduction number, and the daily incidence counts for each country. Finally, we provided forecasts of incidence counts up to 30-days from the time of prediction for each country repeated over 230 daily rolling windows from 15 May to 31 Dec 2020. The forecasting accuracy of the model when Rt is updated every time a new prediction is made was compared with the accuracy using a static Rt.FindingsWe identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between any two interventions were associated with a reduction on the duration of outbreaks (with correlation coefficients of -0.26 and 0.24 respectively). Sustained social distancing appeared to play a role in the prevention of the second transmission peak. By 15 May 2020, the average of the median Rt across examined countries had reduced from its peak of 20.5 (17.79, 23.20) to 1.3 (0.94, 1.74).The time lagged cross correlation analysis revealed that increased policy volume was associated with lower future Rt (the negative correlation was minimized when Rt lagged the policy volume by 75 days), while a lower Rt was associated with lower future policy volume (the positive correlation was maximized when Rt led by 102 days). Rt led the daily incidence counts by 78 days, with lower incidence counts being associated with lower future policy volume (the positive correlation was maximized when counts led the volume by 135 days). On the other hand, higher policy volume was not associated with lower incidence counts within a lag of up to 180 days.The outbreak prediction accuracy of the stochastic transmission model using dynamically updated Rt produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when Rt was kept constant. Prediction accuracy declined with forecasting time.InterpretationUnderstanding the evolution of the daily effective reproduction number during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths. This is because Rt provides an early signal of the efficacy of containment measures. Using updated Rt values produces significantly better predictions of future outbreaks. Our results found a substantial variation in the effect of early public health interventions on the evolution of Rt over time and across countries, which could not be explained solely by the timing and number of the adopted interventions. This suggests that further knowledge about the idiosyncrasy of the implementation and effectiveness thereof is required. Although sustained containment measures have successfully lowered growth rate of disease transmission, more than half of the studied countries failed to maintain an effective reproduction number close to or below 1. This resulted in continued growth in reported cases.


Sign in / Sign up

Export Citation Format

Share Document