scholarly journals Legionella species and serogroups in Malaysian water cooling towers: identification by latex agglutination and PCR-DNA sequencing of isolates

2009 ◽  
Vol 8 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Stacey Foong Yee Yong ◽  
Fen-Ning Goh ◽  
Yun Fong Ngeow

In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml−1; 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2–14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis.L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.

2009 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Elazm Abo ◽  
Farouk Elsafty

The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.


2019 ◽  
Vol 102 (4) ◽  
pp. 1235-1240 ◽  
Author(s):  
Isabelle Barrette

Abstract Background: Legionnaires’ disease is a potentially lethal pneumonia contracted through inhalation of aerosolized water contaminated with Legionella bacteria. Detection and control of L. pneumophila, the primary species responsible for the disease, is critical to public health. In Québec, cooling towers and evaporative condensers are required to follow a maintenance and testing program to ensure L. pneumophila concentrations remain at acceptable levels. Objective: This study compared a new culture method based on the most probable number approach, Legiolert®, with the formal culture method used at EnvironeX for regulatory compliance testing to quantify L. pneumophila from cooling tower waters in Québec. Methods: A split-sample analysis was performed in which 401 samples from cooling towers in Québec were tested with both methods. Results: Results with 74 positive samples showed that Legiolert provided a significant increase in sensitivity for L. pneumophila compared with the agar plate method. Cooling tower samples often contain non-Legionella flora that necessitate multiple treatment and plating conditions to prevent interference with the test. Legiolert showed little to no impact from non-Legionella organisms in this study. Conclusions: Overall, Legiolert showed several advantages over the agar plate method, including increased sensitivity, reduced interference, a simplified test procedure, and an easy-to-read positive signal.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1407
Author(s):  
Alshae Logan-Jackson ◽  
Joan B. Rose

Pathogenic Legionella species grow optimally inside free-living amoebae to concentrations that increase risks to those who are exposed. The aim of this study was to screen a complete drinking water system and cooling towers for the occurrence of Acanthamoeba spp. and Naegleria fowleri and their cooccurrence with Legionella pneumophila, Legionella anisa, Legionella micdadei, Legionella bozemanii, and Legionella longbeachae. A total of 42 large-volume water samples, including 12 from the reservoir (water source), 24 from two buildings (influents to the buildings and exposure sites (taps)), and six cooling towers were collected and analyzed using droplet digital PCR (ddPCR). N. fowleri cooccurred with L. micdadei in 76 (32/42) of the water samples. In the building water system, the concentrations of N. fowleri and L. micdadei ranged from 1.5 to 1.6 Log10 gene copies (GC)/100 mL, but the concentrations of species increased in the cooling towers. The data obtained in this study illustrate the ecology of pathogenic Legionella species in taps and cooling towers. Investigating Legionella’s ecology in drinking and industrial waters will hopefully lead to better control of these pathogenic species in drinking water supply systems and cooling towers.


2007 ◽  
Vol 12 (3) ◽  
pp. 5-6 ◽  
Author(s):  
M R Sala ◽  
C Arias ◽  
J M Oliva ◽  
A Pedrol ◽  
P Roura ◽  
...  

This paper reports the investigation of a community-acquired outbreak of Legionnaires'; disease in the municipalities of Vic and Gurb (Central Region of Catalonia, Spain). There were 55 cases reported in October and November 2005. An epidemiological and environmental investigation was undertaken. Thirty-five case patients (64%) lived in Vic or Gurb, while 36% had visited or worked in Vic or Gurb during the 10 days before onset of symptoms, but no commonly frequented building could be identified. Water probes for culture were obtained from 30 cooling towers. In five cooling towers of two industrial settings in Gurb (plants A and B), Legionella pneumophila (Lp) serogroup 1 was present. Two Lp-1 strains were recovered from cooling towers in plants A and B. The Lp-1 strain from plant A showed a PGFE profile identical with those obtained from three patients. The exposure to Legionella pneumophila apparently occurred in a large area, since 43 of the 55 cases lived, visited or worked within a distance of 1,800 m from plant A, and six cases in a distance between 2,500 and 3,400 m. The inspections of cooling towers in plant A revealed inadequate disinfectant doses of biocide, non-existent maintenance records on weekends and wrong sample points for routine microbial check-ups. Weather conditions in October 2005 template temperature and high humidity (wind conditions are unappreciable) could have been favourable factors in this outbreak together with the flat terrain of Gurb and Vic area, explaining the extensive horizontal airborne dissemination of contaminated aerosols. The outbreak could have been prevented by proper and correct maintenance of the cooling tower at plant A.


2020 ◽  
Vol 2020 (3) ◽  
pp. 180-187
Author(s):  
D Muhiddinov ◽  
◽  
S Sanayev ◽  
B Boliyev

In order to improve the economic performance of the company, the establishment of rational water use schemes and the reduction of the use of fresh water obtained from water supply systems or natural bodies of water can become an important factor. Water-cooling circulating systems, where cooling towers are used as cooling facilities, are the basis of rational water use systems. In water recycling systems that need stable water cooling at high specific hydraulic and thermal loads, cooling towers are used. By spraying water with nozzles or irrigation devices, the surface of water needed to cool it by contact with air is formed. A cooling tower is a heat exchange device for removing heat from various production processes to the environment by evaporating part of the water passing through it. The share of evaporated water usually does not exceed 1.5 %. Most of the cooling towers used were built 30 - 50 years ago. Almost all of these installations are morally and physically outdated. To consider the main criteria that should be guided with the choice of method for reconstruction of cooling towers to increase the efficiency and effectiveness of their operation.


Author(s):  
Noriko Nakanishi ◽  
Ryohei Nomoto ◽  
Shinobu Tanaka ◽  
Kentaro Arikawa ◽  
Tomotada Iwamoto

We investigated the genetic characteristics of 161 Legionella pneumophila strains isolated over a period of 10 years from cooling towers in Japan. Minimum spanning tree analysis based on the sequence-based typing (SBT) of them identified three clonal complexes (CCs); CC1 (105/161, 65.2%), CC2 (22 /161, 13.7%), and CC3 (20/161, 12.4%). CC1 was formed by serogroup (SG) 1 and SG7, whereas CC2 was mainly formed by SG1. All of the CC3 isolates except two strains were SG13. The major sequence types (STs) in CC1 and CC2 were ST1 (88/105, 83.8%) and ST154 (15/22, 68.2%), respectively. These STs are known as typical types of L. pneumophila SG1 in Japanese cooling tower. Additionally, we identified 15 strains of ST2603 as the major type in CC3. This ST has not been reported in Japanese cooling tower. Whole genome sequencing (WGS) analysis of the representative strains in the three CCs, which were isolated from various cooling towers over the 10 years, elucidated high clonal population of L. pneumophila in Japanese cooling tower. Moreover, it revealed that the strains of CC2 are phylogenetically distant compared to those of CC1 and CC3, and belonged to L. pneumophila subsp. fraseri.


2019 ◽  
Author(s):  
Adriana Torres Paniagua ◽  
Kiran Paranjape ◽  
Mengqi Hu ◽  
Émilie Bédard ◽  
Sébastien Faucher

ABSTRACTLegionella pneumophila (Lp) is a waterborne bacterium known for causing Legionnaires’ Disease, a severe pneumonia. Cooling towers are a major source of outbreaks, since they provide ideal conditions for Lp growth and produce aerosols. In such systems, Lp typically grow inside protozoan hosts. Several abiotic factors such as water temperature, pipe material and disinfection regime affect the colonization of cooling towers by Lp. The local physical and biological factors promoting the growth of Lp in water systems and its spatial distribution are not well understood. Therefore, we built a lab-scale cooling tower to study the dynamics of Lp colonization in relationship to the resident microbiota and spatial distribution. The pilot was filled with water from an operating cooling tower harboring low levels of Lp. It was seeded with Vermamoeba vermiformis, a natural host of Lp, and then inoculated with Lp. After 92 days of operation, the pilot was disassembled, the water was collected, and biofilm was extracted from the pipes. The microbiome was studied using 16S rRNA and 18S rRNA genes amplicon sequencing. The communities of the water and of the biofilm were highly dissimilar. The relative abundance of Legionella in water samples reached up to 11% whereas abundance in the biofilm was extremely low (≤0.5 %). In contrast, the host cells were mainly present in the biofilm. This suggest that Lp grows in host cells associated with biofilm and is then released back into the water following host cell lysis. In addition, water temperature shaped the bacterial and eukaryotic community of the biofilm, indicating that different parts of the systems may have different effects on Legionella growth.


2020 ◽  
Vol 11 ◽  
Author(s):  
Robin L. Brigmon ◽  
Charles E. Turick ◽  
Anna S. Knox ◽  
Courtney E. Burckhalter

At the U.S. Department of Energy’s Savannah River Site (SRS) in Aiken, SC, cooling tower water is routinely monitored for Legionella pneumophila concentrations using a direct fluorescent antibody (DFA) technique. Historically, 25–30 operating SRS cooling towers have varying concentrations of Legionella in all seasons of the year, with patterns that are unpredictable. Legionellosis, or Legionnaires’ disease (LD), is a pneumonia caused by Legionella bacteria that thrive both in man-made water distribution systems and natural surface waters including lakes, streams, and wet soil. Legionnaires’ disease is typically contracted by inhaling L. pneumophila, most often in aerosolized mists that contain the bacteria. At the SRS, L. pneumophila is typically found in cooling towers ranging from non-detectable up to 108 cells/L in cooling tower water systems. Extreme weather conditions contributed to elevations in L. pneumophila to 107–108 cells/L in SRS cooling tower water systems in July–August 2017. L. pneumophila concentrations in Cooling Tower 785-A/2A located in SRS A-Area, stayed in the 108 cells/L range despite biocide addition. During this time, other SRS cooling towers did not demonstrate this L. pneumophila increase. No significant difference was observed in the mean L. pneumophila mean concentrations for the towers (p < 0.05). There was a significant variance observed in the 285-2A/A Tower L. pneumophila results (p < 0.05). Looking to see if we could find “effects” led to model development by analyzing 13 months of water chemistry and microbial data for the main factors influencing the L. pneumophila concentrations in five cooling towers for this year. It indicated chlorine and dissolved oxygen had a significant impact (p < 0.0002) on cooling tower 785A/2A. Thus, while the variation in the log count data for the A-area tower is statistically greater than that of the other four towers, the average of the log count data for the A-Area tower was in line with that of the other towers. It was also observed that the location of 785A/2A and basin resulted in more debris entering the system during storm events. Our results suggest that future analyses should evaluate the impact of environmental conditions and cooling tower design on L. pneumophila water concentrations and human health.


Sign in / Sign up

Export Citation Format

Share Document