scholarly journals Bactericidal activity of Ag nanoparticle-impregnated fibreglass for water disinfection

2009 ◽  
Vol 7 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Gordon Nangmenyi ◽  
Wei Xao ◽  
Sharifeh Mehrabi ◽  
Eric Mintz ◽  
James Economy

A new bactericidal system composed of fibreglass impregnated with silver (Ag) nanoparticles was developed and tested. Silver content, particle size and distribution were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The antibacterial effectiveness was evaluated against Escherichia coli (E. coli, ATCC 29055). The minimum inhibitory loading was determined to be less than 1.8 wt% of silver nanoparticles per gram of fibreglass. In a 1 h immersion test, using a 0.1 mg fibreglass mat ml−1, with 2.9 wt% loading of silver nanoparticles completely disinfected 100 ml of 106 CFU ml−1 of E. coli, dramatically outperforming activated carbon fibres impregnated with silver. Inactivation rate studies of 0.05 mg fibreglass mat ml−1 (Ag 1.8 wt%) with 1012 CFU E. coli displayed a 7 log reduction in 5 minutes. The activation and reuse of fibreglass (Ag 4.3 wt%) maintained its full effectiveness after two cycles of use and thermal regeneration at 350°C.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1686 ◽  
Author(s):  
Aline M. F. Linhares ◽  
Cristiano P. Borges ◽  
Fabiana V. Fonseca

Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% polyvinylpyrrolidone in N,N-dimethylacetamide) were prepared by phase inversion method, and silver nanoparticles were deposited on their surface by the physical technique of vapor deposition in a sputtering chamber. The membranes were characterized by Field Emission Scanning Electron Microscopy, and the presence of silver was investigated by Energy-Dispersive Spectroscopy and X-ray Diffraction. Experiments of silver leaching were carried out through immersion and filtration tests. After 10 months of immersion in water, the membranes still presented ~90% of the initial silver, which confirms the efficiency of the sputtering technique. Moreover, convective experiments indicated that 98.8% of silver remained in the membrane after 24 h of operation. Biocidal analyses (disc diffusion method and biofouling resistance) were performed against Pseudomonas aeruginosa and confirmed the antibacterial activity of these membranes with 0.6 and 0.7 log reduction of viable planktonic and sessile cells, respectively. These results indicate the great potential of these new membranes to reduce biofouling effects.


2021 ◽  
Vol 12 ◽  
pp. 798-807
Author(s):  
Yuri B Matos ◽  
Rodrigo S Romanus ◽  
Mattheus Torquato ◽  
Edgar H de Souza ◽  
Rodrigo L Villanova ◽  
...  

Despite all recent advances in medical treatments, infectious diseases remain dangerous. This has led to intensive scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well-established solution in this area. The present work studied the nucleation of silver on halloysite substrates modified by chemical treatment with NaOH. The resulting stabilized Ag-NPs were characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The nucleation was characterized by thermogravimetric analysis and differential scanning calorimetry. The antimicrobial properties of the Ag-NPs were investigated against E. coli and S. aureus. The potential of the Ag-NPs for industrial application was tested by dispersing them into low-density polyethylene. The importance of the chemical affinity between matrix and additive was tested through coating the Ag-NPs with dodecanethiol, a non-polar surfactant. The resulting composites were characterized by scanning electron microscopy and in terms of surface antimicrobial activity. The results demonstrate that the Ag-NPs synthesized in this work are indeed antimicrobial, and that it is possible to imbue a polymeric matrix with the antimicrobial properties of Ag-NPs.


2021 ◽  
Author(s):  
Yuri B Matos ◽  
Rodrigo S Romanus ◽  
Mattheus Torquato ◽  
Edgar H de Souza ◽  
Rodrigo L Villanova ◽  
...  

Despite all recent advances in medical treatments, infectious diseases remain dangerous. This scenario has led to intense scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well established solution in this area. The present work studied the nucleation of silver in halloysite substrates (HNT) modified by a NaOH chemical treatment. The resulting stabilized Ag-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). The nucleation was characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Ag-NPs antimicrobial properties were investigated against \textit{E. coli} and \textit{S. aureus}. The potential of Ag-NPs for industrial application was tested by dispersing them into low density polyethylene (LDPE). The importance of the chemical affinity between matrix and additive was tested coating Ag-NPs with dodecanethiol, a non-polar surfactant. The resulting composites were characterized by scanning electron microscopy (SEM) and in terms of surface antimicrobial activity. The results demonstrate that Ag-NPs synthesized in this work are indeed antimicrobial, and that it is possible to imbue a polymeric matrix with the Ag-NPs antimicrobial properties.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


2021 ◽  
Vol 22 (7) ◽  
pp. 3539
Author(s):  
Anastasia Meretoudi ◽  
Christina N. Banti ◽  
Panagiotis K. Raptis ◽  
Christina Papachristodoulou ◽  
Nikolaos Kourkoumelis ◽  
...  

The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.


2021 ◽  
Vol 21 (11) ◽  
pp. 5784-5793
Author(s):  
K. Geetha ◽  
R. Udhayakumar

In this study, spinel NiCexFe2–XO4 (x = 0.0 - 0.5) nanoparticles (NPs) was synthesized by microwave combustion technique (MCT) utilizing the fuel of Aloe vera plant extract. The establishment of spinel cubic crystal structure was ensured by powder X-ray diffraction (PXRD) technique. The particles like nanostructured morphology were confirmed by high-resolution scanning electron microscope (HRSEM). Energy dispersive X-ray (EDX) studies confirmed the formation of spinel ferrite structure and ensured that no other elements were present. Magnetic parameters such as remanant magnetisation (Mr), coercivity (He) and saturation magnetization (Ms) were calculated from the magnetic hysteresis (M-H) loops, which exhibited ferromagnetic behaviour. The photocatalytic behavior was investigated by visible light treatment for the photocatalytic degradation (PCD) of rhodamine B (Rh-B) dye and the sample NiCe0.3Fe1.7O4 exhibits higher PCD efficiency (93.88%) than other compositions. The antibacterial activities of gram-positive S. aureus, B. subtilis, gramnegative K. pneumonia and E. coli have been investigated using undoped and Ce3+ substituted NiFe2O4 NPs and observed higher activity, which indicated that, they can be used in the bio-medical applications.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2014 ◽  
Vol 70 (12) ◽  
pp. 1640-1642 ◽  
Author(s):  
Yongbin Xu ◽  
Chun-Shan Quan ◽  
Xuanzhen Jin ◽  
Xiaoling Jin ◽  
Jing Zhao ◽  
...  

Universal stress proteins (Usps) are among the most highly induced genes when bacteria are subjected to several stress conditions such as heat shock, nutrient starvation or the presence of oxidants or other stress agents.Escherichia colihas five small Usps and one tandem-type Usp. UspE (or YdaA) is the tandem-type Usp and consists of two Usp domains arranged in tandem. To date, the structure of UspE remains to be elucidated. To contribute to the molecular understanding of the function of the tandem-type UspE, UspE fromE. coliwas overexpressed and the recombinant protein was purified using Ni–NTA affinity, Q anion-exchange and gel-filtration chromatography. Crystals of UspE were obtained by sitting-drop vapour diffusion. A diffraction data set was collected to a resolution of 3.2 Å from flash-cooled crystals. The crystals belonged to the tetragonal space groupI4122 orI4322, with unit-cell parametersa=b= 121.1,c = 241.7 Å.


Sign in / Sign up

Export Citation Format

Share Document