scholarly journals Identification and characterization of vancomycin-resistant Staphylococcus aureus in hospital wastewaters: evidence of horizontal spread of antimicrobial resistance

Author(s):  
Sneha Kalasseril Girijan ◽  
Devika Pillai

Abstract Antibiotic resistance has become a major threat to human health around the world, but its spread through the aquatic environment has been often overlooked. This study aimed to determine the occurrence of vancomycin-resistant Staphylococcus aureus in hospital wastewaters and their transmission into public water bodies in Kerala, India. A total of 113 S. aureus were isolated from three hospital effluents in Kerala, India. Standard disc diffusion and the strip method were used for antibiotic susceptibility testing and minimum inhibitory concentration detection. Plasmid-mediated vancomycin resistance was confirmed by plasmid curing and conjugation; resistant genes were detected by the polymerase chain reaction (PCR). Nearly 76% of S. aureus isolates were resistant to β-lactams, chloramphenicol, macrolides, aminoglycosides, and glycopeptide class of antibiotics. Among the vancomycin-resistant Staphylococcus aureus (VRSA) isolates, the prevalence rates of vanA and vanB resistance-encoding genes were 46.5 and 59.3%, respectively. Through the broth mating method, vanA gene was successfully transferred from VRSA donor to vancomycin-sensitive S. aureus. The study strongly indicates the contamination of water bodies with antibiotic-resistant bacteria from hospital discharges, their dissemination and possible transfer to microbes in the aquatic environment, posing a serious threat for public health.

2020 ◽  
Vol 367 (8) ◽  
Author(s):  
Abdelhakim Boudrioua ◽  
Yanyan Li ◽  
Axel Hartke ◽  
Caroline Giraud

ABSTRACT The increasing spread of antibiotic resistant bacteria is a major human health concern. The challenging development of new effective antibiotics has led to focus on seeking synergistic antibiotic combinations. Vancomycin (VAN) is a glycopeptide antibiotic used to treat Staphylococcus aureus and enterococci infections. It is targeting D-Alanyl-D-Alanine dimers during peptidoglycan biosynthesis. D-cycloserine (DCS) is a D-Alanine analogue that targets peptidoglycan biosynthesis by inhibiting D-Alanine:D-Alanine ligase (Ddl). The VAN-DCS combination was found to be synergistic in VAN resistant S. aureus strains lacking van genes cluster. We hypothesize that this combination leads to opposite effects in S. aureus and enterococci strains harboring van genes cluster where VAN resistance is conferred by the synthesis of modified peptidoglycan precursors ending in D-Alanyl-D-Lactate. The calculated Fractional Inhibitory Concentration of VAN-DCS combination in a van- vancomycin-intermediate, VanA type, and VanB type strains were 0.5, 5 and 3, respectively. As a result, VAN-DCS combination leads to synergism in van-lacking strains, and to antagonism in strains harboring van genes cluster. The VAN-DCS antagonism is due to a mechanism that we named van-mediated Ddl inhibition bypass. Our results show that antibiotic combinations can lead to opposite effects depending on the genetic backgrounds.


Author(s):  
Ádám Kerek ◽  
Ágnes Sterczer ◽  
Zoltán Somogyi ◽  
Dóra Kovács ◽  
Ákos Jerzsele

AbstractMultidrug-resistant bacteria can cause severe nosocomial infections in both human and veterinary clinics. The aim of this study was to investigate the presence and antibiotic susceptibility of Enterococcus, Staphylococcus and Pseudomonas strains at four small animal clinics of Hungary in 2018, as these bacteria can reliably represent the level of antimicrobial resistance in the investigated environment. A total of 177 Staphylococcus colonies were found, including 22 Staphylococcus pseudintermedius and 13 Staphylococcus aureus. As regards enterococci, 9 Enterococcus faecium, 2 E. faecalis and further 286 Enterococcus strains were isolated. The number of Pseudomonas aeruginosa isolates (n = 34) was considered too low for relevant susceptibility testing. Among staphylococci, the highest resistance was found to sulphamethoxazole (82.9%), penicillin (65.7%) and erythromycin (54.3%), while in the case of enterococci, resistance to norfloxacin and rifampicin was the most common, with 25.5% of the strains being resistant to both antibiotics. Ten methicillin-resistant S. pseudintermedius (MRSP) and six vancomycin-resistant Enterococcus (VRE) strains could be identified. Only 5.7% of the Staphylococcus isolates were susceptible to all tested agents, while this ratio was 36.2% among enterococci. The results of this study have revealed a high prevalence of antibiotic-resistant bacteria in Hungarian small animal clinics, which highlights the importance of regular disinfection processes and stringent hygiene measures in veterinary clinics.


2019 ◽  
Author(s):  
Fumiyasu Okazaki ◽  
Yasuhiro Tsuji ◽  
Yoshihiro Seto ◽  
Chika Ogami ◽  
Yoshihiro Yamamoto ◽  
...  

AbstractLinezolid is an oxazolidinone antibiotic that effectively treats methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Since rifampicin induces other antibiotic effects, it is combined with linezolid in therapeutic regimes. However, linezolid blood concentrations are reduced by this combination, which increases the risk of the emergence of antibiotic-resistant bacteria. We herein demonstrated that the combination of linezolid with rifampicin inhibited its absorption and promoted its elimination, but not through microsomal enzymes. Our results indicate that the combination of linezolid with rifampicin reduces linezolid blood concentrations via metabolic enzymes.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


2015 ◽  
Vol 36 (11) ◽  
pp. 1275-1282 ◽  
Author(s):  
Rupak Datta ◽  
Shawn Brown ◽  
Vinh Q. Nguyen ◽  
Chenghua Cao ◽  
John Billimek ◽  
...  

OBJECTIVETo assess the time-dependent exposure of California healthcare facilities to patients harboring methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum β-lactamase (ESBL)–producing Escherichia coli and Klebsiella pneumoniae, and Clostridium difficile infection (CDI) upon discharge from 1 hospital.METHODSRetrospective multiple-cohort study of adults discharged from 1 hospital in 2005–2009, counting hospitals, nursing homes, cities, and counties in which carriers were readmitted, and comparing the number and length of stay of readmissions and the number of distinct readmission facilities among carriers versus noncarriers.RESULTSWe evaluated 45,772 inpatients including those with MRSA (N=1,198), VRE (N=547), ESBL (N=121), and CDI (N=300). Within 1 year of discharge, MRSA, VRE, and ESBL carriers exposed 137, 117, and 45 hospitals and 103, 83, and 37 nursing homes, generating 58,804, 33,486, and 15,508 total exposure-days, respectively. Within 90 days of discharge, CDI patients exposed 36 hospitals and 35 nursing homes, generating 7,318 total exposure-days. Compared with noncarriers, carriers had more readmissions to hospitals (MRSA:1.8 vs 0.9/patient; VRE: 2.6 vs 0.9; ESBL: 2.3 vs 0.9; CDI: 0.8 vs 0.4; all P<.001) and nursing homes (MRSA: 0.4 vs 0.1/patient; VRE: 0.7 vs 0.1; ESBL: 0.7 vs 0.1; CDI: 0.3 vs 0.1; all P<.001) and longer hospital readmissions (MRSA: 8.9 vs 7.3 days; VRE: 8.9 vs 7.4; ESBL: 9.6 vs 7.5; CDI: 12.3 vs 8.2; all P<.01).CONCLUSIONSPatients harboring antibiotic-resistant pathogens rapidly expose numerous facilities during readmissions; regional containment strategies are needed.Infect. Control Hosp. Epidemiol. 2015;36(11):1275–1282


2021 ◽  
Vol 9 ◽  
Author(s):  
Thanh Chung Pham ◽  
Van-Nghia Nguyen ◽  
Yeonghwan Choi ◽  
Dongwon Kim ◽  
Ok-Sang Jung ◽  
...  

The ability to detect hypochlorite (HOCl/ClO−) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R1SR2) probes, which act to both sense ClO− and kill bacteria. The N2C=S moieties can recognize ClO− among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R1IR2) via desulfurization. This was observed through UV–vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43–99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO−, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase–producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.


2014 ◽  
Vol 26 (2) ◽  
pp. 579-582 ◽  
Author(s):  
Maqsood Ahmad ◽  
Amin U. Khan ◽  
Abdul Wahid ◽  
Muhammad Farhan ◽  
Zahid Ali Butt ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1255 ◽  
Author(s):  
Ana Monserrat-Martinez ◽  
Yann Gambin ◽  
Emma Sierecki

Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.


2020 ◽  
Vol 8 (10) ◽  
pp. 1487
Author(s):  
Marta Aires-de-Sousa ◽  
Claudine Fournier ◽  
Elizeth Lopes ◽  
Hermínia de Lencastre ◽  
Patrice Nordmann ◽  
...  

In order to evaluate whether seagulls living on the Lisbon coastline, Portugal, might be colonized and consequently represent potential spreaders of multidrug-resistant bacteria, a total of 88 gull fecal samples were screened for detection of extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacteriaceae for methicillin-resistant Staphylococcus aureus (MRSA) and for vancomycin-resistant Enterococci (VRE). A large proportion of samples yielded carbapenemase- or ESBL-producing Enterobacteriaceae (16% and 55%, respectively), while only two MRSA and two VRE were detected. Mating-out assays followed by PCR and whole-plasmid sequencing allowed to identify carbapenemase and ESBL encoding genes. Among 24 carbapenemase-producing isolates, there were mainly Klebsiella pneumoniae (50%) and Escherichia coli (33%). OXA-181 was the most common carbapenemase identified (54%), followed by OXA-48 (25%) and KPC-2 (17%). Ten different ESBLs were found among 62 ESBL-producing isolates, mainly being CTX-M-type enzymes (87%). Co-occurrence in single samples of multiple ESBL- and carbapenemase producers belonging to different bacterial species was observed in some cases. Seagulls constitute an important source for spreading multidrug-resistant bacteria in the environment and their gut microbiota a formidable microenvironment for transfer of resistance genes within bacterial species.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 85 ◽  
Author(s):  
Hercules Sakkas ◽  
Petros Bozidis ◽  
Afrodite Ilia ◽  
George Mpekoulis ◽  
Chrissanthy Papadopoulou

During a six-month period (October 2017–March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined hospital raw sewage samples. In addition, the aforementioned methods which are currently used in clinical laboratories for the rapid identification and detection of resistant bacteria and genes, performed sufficiently to provide reliable results in terms of accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document