scholarly journals A critical review of the Ganges Water Sharing arrangement

Water Policy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 259-276
Author(s):  
Kazi Saidur Rahman ◽  
Zahidul Islam ◽  
Umme Kulsum Navera ◽  
Fulco Ludwig

Abstract The 1996 Ganges Water Sharing Treaty was an important breakthrough in solving disputes over sharing Ganges water between India and Bangladesh. This study evaluates cooperation reflected in the Treaty by performing a quantitative analysis on available water sharing data. The study recognized that inaccurate projection of future flow and the obligation of allocating guaranteed 991 m3/s flows perpetuate the ongoing water sharing conflicts. The provision of guaranteed minimal flow alternately to India and Bangladesh during critical periods leads to frequent occurrences of low-flow events. Results indicated that the Treaty underestimated the impact of climate variability and possibly increasing upstream water abstraction. Statistical analysis of the post-Treaty data (1997–2016) also indicated that 65% of the time Bangladesh did not receive its guaranteed share during critical dry periods with high water demand. It is advised to project the reliable water availability using a combination of modelling and improved observation of river flows. In addition, the condition of minimum guaranteed share should be removed to reduce the frequency of low-flow events in future. Although our analyses show a number of weaknesses, the Treaty could still enhance the future regional cooperation if some adjustments are made to the current terms and conditions.

Author(s):  
Diovany D. Ramos ◽  
Silvio B. Pereira ◽  
Fabiane K. Arai ◽  
Felipe A. dos Santos ◽  
Thiago de O. Carnevali

ABSTRACT The objective of this study was to evaluate water seasonality in the process of granting permits and the impact of irrigation in the Dourados River basin. For that, the hydrological behavior of the basin was analyzed. The minimal streamflows (Q7,10 and Q95), irrigation withdrawal flow (Qr) and the percent variation of the grant flows relative to monthly seasonal period in relation to the monthly withdrawal flow were obtained. The results allowed to verify that using criteria based on the monthly streamflow allows for better management of water use, because it allows for greater utilization of this resource in times with high water availability and imposes a realistic restriction during critical periods. The average annual water withdrawal for irrigation in the basin during the studied period was on the order of 2.99 m3 s-1, and the withdrawal flow in the month of highest demand (August) was 5.95 m3 s-1.


2008 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
D. Vanham ◽  
E. Fleischhacker ◽  
W. Rauch

Abstract. Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.


2020 ◽  
Vol 24 (5) ◽  
pp. 15-24
Author(s):  
Tran Thanh Long ◽  
Sucharit Koontanakulvong

Since the 1990s, under the pressure of socio-economic growth in the Ho Chi Minh City and nearby provinces, the heavy-extraction of groundwater of this area has dramatically increased to meet high water demand for domestic and industrial purposes. Although the groundwater – Saigon River interaction significantly contributes to groundwater reserves, researchers have been less attentive to fully describe and understand the river recharge. This study attempts to explore the impact of groundwater-river interaction to aquifer system due to pumping increase via field seepage and (O18, H2) isotopic measurements in the Saigon River Basin, South East of Vietnam. The analysis showed that river bed conductance at 0 km, 30 km, 60 km, 80 km, and 120 km were 4.5 m2/day/m, 4.2 m2/day/m, 2.5 m2/day/m, 1.7 m2/day/m, and 0.25 m2/day/m respectively. The riverbed conductance relies on the sand percentage of sediment. The composition δO18 in groundwater, river, and precipitation indicates that river recharge to groundwater exists mainly in the lower part of the basin. In contrast to downstream, the composition of δO18 was signified that the river primarily gains water from groundwater upstream. Under pressure of developing economies, the groundwater pumping in the Saigon river basin increased from 175,000 m3/day in 1995 to 880,000 m3/day in 2017. As a consequence of the increased pumping rate, the groundwater discharge to the river decreases from 1.6 to 0.7 times of groundwater pumping in upstream, while the amount of Saigon river recharge increases by 33% to 50% of the total groundwater pumping downstream. Under the exceedance pumping rate, the aquifers in the Saigon River Basin release less water to the Saigon river and it tends to gain more water through the river - groundwater interaction process. Therefore, groundwater management in downstream aquifers needs better joint planning with surface water development plans, particularly for surface water supply utilities which still struggle to satisfy the water demand of the development plan.


2020 ◽  
Author(s):  
Stefano Terzi ◽  
Janez Sušnik ◽  
Sara Masia ◽  
Silvia Torresan ◽  
Stefan Schneiderbauer ◽  
...  

<p>Mountain regions are facing multiple impacts due to climate change and anthropogenic activities. Shifts in precipitation and temperature are affecting the available water influencing a variety of economic activities that still rely on large quantities of water (e.g. ski tourism, energy production and agriculture). The Alps are among those areas where recent events of decreased water availability triggered emerging water disputes and spread of economic impacts across multiple sectors and from upstream high water availability areas to downstream high water demand areas. In order to make our water management systems more resilient, there is a need to unravel the interplays and dependencies that can lead to multiple impacts across multiple sectors. However, current assessments dealing with climate change usually account for a mono sectoral and single risk perspective.</p><p>This study hence shows an integrative assessment of multi-risk processes across strategic sectors of the Alpine economy. System dynamics modelling (SDM) is applied as a powerful tool to evaluate the multiple impacts stemming from interactions and feedbacks among water-food-energy economic sectors of the Noce river catchment in the Province of Trento (Italy).</p><p>The SDM developed for the Noce catchment combined outputs from physically based models to evaluate water availability and statistical assessments for water demands from three main sectors: (i) apple orchards cultivation, (ii) water releases from large dam reservoirs for hydropower production and (iii) domestic and seasonal tourism activities.</p><p>Hydrological results have been validated on historical time series (i.e. 2009-2017) and projected in the future considering RCP 4.5 and 8.5 climate change scenarios for 2021-2050 medium term and 2041-2070 long term. Results show a precipitation decrease affecting river streamflow with consequences on water stored and turbined in all dam reservoirs of the Noce catchment, especially for long-term climate change scenarios. Moreover, temperature scenarios will increase the amount of water used for agricultural irrigation from upstream to downstream. Nevertheless, decreasing population projections will have a beneficial reduction of water demand from residents, counterbalancing the increasing demand from the other sectors.</p><p>Finally, the integrated SDM fostered discussions in the Noce catchment on interplays between climate change and anthropogenic activities to tackle climate-related water scarcity.</p>


2013 ◽  
Vol 17 (11) ◽  
pp. 4429-4440 ◽  
Author(s):  
N. K. Gunasekara ◽  
S. Kazama ◽  
D. Yamazaki ◽  
T. Oki

Abstract. The effectiveness of population policy in reducing the combined impacts of population change and climate change on water resources is explored. One no-policy scenario and two scenarios with population policy assumptions are employed in combination with water availability under the SRES scenarios A1b, B1 and A2 for the impact analysis. The population data used are from the World Bank. The river discharges per grid of horizontal resolution 0.5° are obtained from the Total Runoff Integrating Pathways (TRIP) of the University of Tokyo, Japan. Unlike the population scenarios utilized in the SRES emission scenarios and the newest representative concentration pathways, the scenarios employed in this research are based, even after 2050, on country-level rather than regional-level growth assumptions. Our analysis implies that the heterogeneous pattern of population changes across the world is the dominant driver of water stress, irrespective of future greenhouse gas emissions, with highest impacts occurring in the already water-stressed low latitudes. In 2100, Africa, Middle East and parts of Asia are under extreme water stress under all scenarios. The sensitivity analysis reveals that a small reduction in populations over the region could relieve a large number of people from high water stress, while a further increase in population from the assumed levels (SC1) might not increase the number of people under high water stress considerably. Most of the population increase towards 2100 occurs in the already water-stressed lower latitudes. Therefore, population reduction policies are recommended for this region as a method of adaptation to the future water stress conditions. Population reduction policies will facilitate more control over their future development pathways, even if these countries were not able to contribute significantly to greenhouse gas (GHG) emission cuts due to economic constraints. However, for the European region, the population living in water-stressed regions is almost 20 times lower than that in the lower latitudes. For countries with high population momentum, the population policy scenario with fertility-reduction assumptions gained a maximum of 6.1 times the water availability in Niger and 5.3 times that in Uganda compared with the no-policy scenario. Most of these countries are in sub-Saharan Africa. These countries represent 24.5% of the global population in the no-policy scenario, and the scenario with fertility-reduction assumptions reduces it to 8.7% by 2100. This scenario is also effective in reducing the area under extreme water stress in these countries. However, the policy scenario with assumptions of population stabilization at the replacement fertility rate increases the water stress in high-latitude countries. Nevertheless, the impact is low due to the high per capita water availability in the region. This research is expected to widen the understanding of the combined impacts of climate change in the future and of the strategies needed to enhance the space for adaptation.


2017 ◽  
Vol 3 (2) ◽  
pp. 343 ◽  
Author(s):  
Faza Ramadhani

The change of land use in Mt. Muria area Central Java has been resulting in the significant sheet erosion of upstream watershed around Mt. Muria, followed by considerably high sedimentation on rivers downstream that lead to the reduction of cross sections of the rivers including Logung River. Such situation has been contributing the condition that downstream of Logung River is very potential to experience over flow and inundation to its surrounding area. An idea of constructing the Logung Dam was introduced in 1986 that aimed at reducing the aforementioned inundation. Besides, the development of Logung Dam was also aimed at fulfilling both irrigation and non-irrigation water demand. This paper presents the results of the analysis of the water availability and flood control performance of the Logung Dam. The dependable flow was analyzed by applying the National Rural Electric Cooperative Association (NRECA) method in order to determine the low flow characteristics, whereas the identification of the high flow characteristics was carried out by using the Synthetic Unit Hydrograph (SUH) methods, i.e., the GAMA I and Nakayasu modeling approach. At a certain reservoir characteristic and a defined geometry of spillway, several reservoir routing simulations were carried out on both dependable flows and high flows. Results of the reservoir routing showed the promising water availability of the Logung Dam to fulfill water demand for both irrigation and non-irrigation, whereas the reservoir routing could reduce the probable maximum flood from QPMF from 1,031 m3/s to approximately 950 m3/s or damping efficiency at 7.86%. Further analysis suggests necessary operation and maintenance of Logung Dam to sustain its function and to mitigate possible problems related to reservoir sedimentation.


Author(s):  
Laureline Berthot ◽  
André St-Hilaire ◽  
Daniel Caissie ◽  
Nassir El-Jabi ◽  
Judith Kirby ◽  
...  

Abstract Through a case study in Southern Quebec (Canada), the assessment of environmental flows in light of the effects of climate change is investigated. Currently, the 7Q2 flow metric (7-day average flow with a 2-year return period) is used for water abstraction management. Several flow metrics were calculated using flow time series simulated by a deterministic hydrological model (HYDROTEL) and climate change scenarios as inputs. Results were compared within homogeneous low flow regions defined using ascendant hierarchical clustering, for the 1990, 2020 and 2050 horizons and annual, summer and winter periods. The impact of each flow metric on the potential availability of physical habitat was analyzed using the wetted perimeter as a proxy. Results indicated that: (1) the increasing non-stationarity of simulated flow data sets over time will complicate the use of frequency analysis to calculate the 7Q2 flow metric; (2) summer low flow values are expected to be lower than winter low flows; and (3) flow-duration curve metrics like the LQ50 (median discharge value of the month with the lowest flow) may become relevant environmental flow metrics by 2050. Results question current water abstraction management tools and permit to anticipate future local and regional issues during low flow periods.


2015 ◽  
Vol 12 (9) ◽  
pp. 9741-9763 ◽  
Author(s):  
L. Muthuwatta ◽  
U. A. Amarasinghe ◽  
A. Sood ◽  
S. Lagudu

Abstract. Surface runoff generated in the monsoon months in the upstream parts of the Ganges River Basin contributes substantially to downstream floods, while water shortages in the dry months affect agricultural production in the basin. This paper examines the parts (sub-basins) of the Ganges that have the potential for augmenting subsurface storage (SSS), increase the availability of water for agriculture and other uses, and mitigate the floods in the downstream areas. The Soil and Water Assessment Tool (SWAT) is used to estimate sub-basin-wise water availability. The water availability estimated is then compared with the sub-basin-wise un-met water demand for agriculture. Hydrological analyses revealed that five sub-basins produced more than 10 billion cubic meters (B m3) of annual surface runoff consistently during the simulation period. In these sub-basins, less than 50 % of the annual surface runoff is sufficient to irrigate all irrigable land in both the \\textit{Rabi} (November to March) and summer (April to May) seasons. Further, for most of the sub-basins, there is sufficient water to meet the un-met water demand, provided that it is possible to capture the surface runoff during the wet season. It is estimated that the average flow to Bihar State from the upstream of the Ganges, a downstream basin location, is 277 ± 121 B m3, which is more than double the rainfall in the state alone. Strong relationships between outflows from the upstream sub-basins and the inflows to Bihar State suggested that flood inundation in the state could be reduced by capturing a portion of the upstream flows during the peak runoff periods.


2017 ◽  
Vol 21 (5) ◽  
pp. 2545-2557 ◽  
Author(s):  
Lal Muthuwatta ◽  
Upali A. Amarasinghe ◽  
Aditya Sood ◽  
Lagudu Surinaidu

Abstract. Runoff generated in the monsoon months in the upstream parts of the Ganges River basin (GRB) contributes substantially to downstream floods, while water shortages in the dry months affect agricultural production in the basin. This paper examines the potential for subsurface storage (SSS) in the Ganges basin to mitigate floods in the downstream areas and increase the availability of water during drier months. The Soil and Water Assessment Tool (SWAT) is used to estimate sub-basin water availability. The water availability estimated is then compared with the sub-basin-wise unmet water demand for agriculture. Hydrological analysis reveals that some of the unmet water demand in the sub-basin can be met provided it is possible to capture the runoff in sub-surface storage during the monsoon season (June to September). Some of the groundwater recharge is returned to the stream as baseflow and has the potential to increase dry season river flows. To examine the impacts of groundwater recharge on flood inundation and flows in the dry season (October to May), two groundwater recharge scenarios are tested in the Ramganga sub-basin. Increasing groundwater recharge by 35 and 65 % of the current level would increase the baseflow during the dry season by 1.46 billion m3 (34.5 % of the baseline) and 3.01 billion m3 (71.3 % of the baseline), respectively. Analysis of pumping scenarios indicates that 80 000 to 112 000 ha of additional wheat area can be irrigated in the Ramganga sub-basin by additional SSS without reducing the current baseflow volumes. Augmenting SSS reduces the peak flow and flood inundated areas in Ramganga (by up to 13.0 % for the 65 % scenario compared to the baseline), indicating the effectiveness of SSS in reducing areas inundated under floods in the sub-basin. However, this may not be sufficient to effectively control the flood in the downstream areas of the GRB, such as in the state of Bihar (prone to floods), which receives a total flow of 277 billion m3 from upstream sub-basins.


2009 ◽  
Vol 59 (3) ◽  
pp. 469-477 ◽  
Author(s):  
D. Vanham ◽  
E. Fleischhacker ◽  
W. Rauch

Climate change will induce an increasing drought risk in western and southern Europe and a resulting increase in water stress. This paper investigates the impact of both the extreme hot and dry summer of 2003 and the PRUDENCE CHRM climate change scenario summer for 2071–2100 on the monthly water balance (available water resources versus water demand) within the Kitzbueheler Region in the Austrian Alps. As a baseline period the climate normal period from 1961 to 1990 was chosen. In both summer scenarios total flow and ground water recharge decrease substantially, due to the decrease in precipitation and increase in evapotranspiration However, regional water availability is still sufficient to serve all water demand stakeholders. As a result of decreased snow cover duration, flow seasonality changes within the CHRM scenario. Especially springs are very vulnerable to these climatological conditions; average local groundwater recharge is reduced by 20% up to 70% within both scenarios. Due to the hydrogeological characteristics of the case study area and the typical small structured alpine water supply infrastructure, local deficits can occur. But also groundwater aquifers in the valleys show a decrease in water availability. These results are supported by observations made in 2003 throughout Austria and Switzerland.


Sign in / Sign up

Export Citation Format

Share Document