scholarly journals Degradation and biodegradability improvement of the landfill leachate using electrocoagulation with iron and aluminum electrodes: A comparative study

2020 ◽  
Vol 15 (2) ◽  
pp. 540-549 ◽  
Author(s):  
M. Bharath ◽  
B. M. Krishna ◽  
B. Manoj Kumar

Abstract This present study investigates the comparative study of iron and aluminum electrodes for the treatment of landfill leachate by the Batch Electrocoagulation (EC) technique. The performance of EC was used to determine the removal efficiency of COD and Color. The effects of operating conditions such as electrode material, stirring speed, inter-electrode distance, electrolysis time, initial pH, and applied voltage were studied to evaluate the performance of the electrode. The electrodes were arranged in a monopolar mode by applying different cell voltages of 4, 6, 8, 10 and 12 V for 180 min of electrolysis time (ET) with a varying inter-electrode distance between 1 and 4 cm. The iron and aluminum electrodes can be successfully used as anodes and cathodes for the treatment process, which makes the process more efficient and easier to maintain. Based on the obtained results, it was observed that there was an increase in BOD/COD ratio from 0.11 to 0.79. The maximum removal of COD and Color was found to be 76.5% and 67.2% respectively, accomplished with 105 min optimum electrolysis time with a pH of 9.25 using an iron electrode. In the case of the aluminum electrode, the BOD/COD ratio was increased from 0.11 to 0.66. Over 78.4% of COD and 77.0% of Color removal was obtained with 90 min optimum electrolysis duration and pH 9.3 with an optimum 10 V and an optimum inter-electrode distance of 1 cm. However, the aluminum electrode is superior to iron as a sacrificial electrode material in terms of Color and COD removal efficiency. The aluminum electrode significantly treated landfill leachate by the electrocoagulation method under optimum experimental conditions.

2017 ◽  
Vol 901 ◽  
pp. 149-153 ◽  
Author(s):  
Galuh Yuliani ◽  
Kinia Mitasari ◽  
Agus Setiabudi

Electrocoagulation technique has been widely used in wastewater treatment because it is considered as safe, efficient and environmentally friendly. In this research, electrocoagulation cell was constructed using aluminum and iron electrodes. These metal plates were cut into three parts and were arranged in parallel modes. The constructed electrocoagulation cells were then utilized for the treatment of wastewater obtained from local paper industry. Some operational parameters namely electrolysis time, pH, applied voltage, and electrode distance were analyzed. It was found that the optimum conditions were electrolysis time of 60 minute, pH of 7, applied voltage of 14 V and electrode distance of 1.5 cm. For iron electrode, percentage removals of conductivity, turbidity, COD and BOD were 62%, 97%, 37% and 30%, respectively. For aluminum electrode, the percentage removals of conductivity, turbidity, COD and BOD were 42%, 98%, 37% and 50%, respectively.


The present research work mainly deals with the removal percentage of Color and Chemical Oxygen Demand (COD) on landfill leachate by using electrocoagulation (EC) process. An EC process was carried out with an aluminium electrode and it act as both anode and cathode. The study mainly targets the factors affecting on electrode material, electrolysis time, initial pH, applied voltage, inter-electrode distance. The experimental result reveals that there was raise in BOD/COD ratio from 0.11 to 0.66 and the maximum percentage removal achieved were COD and Color 78.4% and 77.0% respectively. The optimum inter-electrode distance 1cm with electrode surface area 35 cm2 and optimum electrolysis time of 90 min at optimum applied voltage 10V, stirring speed 250 rpm and pH is 9.3. These results showed that the EC process is appropriate and well-organized approach for the landfill leachate treatment.


2014 ◽  
Vol 50 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Malika Aoudjehane ◽  
Mohamed Elghazali Benatallah

A procedure of electrocoagulation (EC) using iron electrodes has been used for the treatment of the wastewaters produced by the Beni-Tamou dairy in Algeria. The effect of the operating conditions, such as the current intensity, the electrolysis time, the pH of the solution and the electrical conductivity, on the removal efficiency of chemical oxygen demand (COD) and the total suspended solids (TSS) has been studied. An inter-electrode distance of 1 cm has been maintained constant during the tests. It has been found that an increase in electrolysis time and current density improved the treatment significantly, albeit with a greater consumption of energy as well as an increased electrode consumption. The results of the electrocoagulation treatment under various operating conditions show that the optimal efficiency has been obtained under the following conditions: 60 minutes of electrolysis, a current density of 200 A/m2, a pH 8, an electrical conductivity of 4.72 mS/cm and a consumption energy of 13.57 kWh/m3. Under these conditions, the removal efficiency for the COD and TSS parameters is 93.26 and 99.3%, respectively. The optimal treatment conditions of dairy wastewaters have resulted in final COD and TSS concentrations of 41.5 and 27 mg/L, respectively, values that are conform to industrial liquid effluents discharge norms.


2016 ◽  
Vol 51 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Kshitij Ranjan ◽  
Shubhrasekhar Chakraborty ◽  
Mohini Verma ◽  
Jawed Iqbal ◽  
R. Naresh Kumar

Sequencing batch reactor (SBR) was assessed for direct co-treatment of old landfill leachate and municipal wastewater for chemical oxygen demand (COD), nutrients and turbidity removal. Nitrogen removal was achieved by sequential nitrification and denitrification under post-anoxic conditions. Initially, SBR operating conditions were optimized by varying hydraulic retention time (HRT) at 20% (v/v) landfill leachate concentration, and results showed that 6 d HRT was suitable for co-treatment. SBR performance was assessed in terms of COD, ammonia, nitrate, phosphate, and turbidity removal efficiency. pH, mixed liquor suspended solids, mixed liquor volatile suspended solids (MLVSS), and sludge volume index were monitored to evaluate stability of SBR. MLVSS indicated that biomass was able to grow even at higher concentrations of old landfill leachate. Ammonia and nitrate removal efficiency was more than 93% and 83%, respectively, whereas COD reduction was in the range of 60–70%. Phosphate and turbidity removal efficiency was 80% and 83%, respectively. Microbial growth kinetic parameters indicated that there was no inhibition of biomass growth up to 20% landfill leachate. The results highlighted that SBR can be used as an initial step for direct co-treatment of landfill leachate and municipal wastewater.


2013 ◽  
Vol 777 ◽  
pp. 370-374 ◽  
Author(s):  
He Lan Guan

Treatment of two-dimensional and three-dimensional electrode method was researched and compared respectively using aluminum electrodes. The influences of voltage, electrolysis time, pH and electrode distance on the result were also discussed. It was found that the degradation rate of wastewater with three-dimensional electrode method was much better than two-dimensional method. For the treatment of vehicle-washing wastewater, the best of voltage was 20V, the electrolysis time was 30 min, and the electrode distance was 2cm.


Electrocoagulation (EC) process uses direct electric current source between metal electrode submerged in the effluent that results in electrode dissolution, with a suitable pH, metal ion can form a wide range of metal hydroxide and coagulated species that destabilized and dissolved contaminants absorbed. Electrocoagulation (EC) has been working for the percentage removal of BOD (Biochemical oxygen demand)/ chemical oxygen demand (COD) ratio, Color and COD on leachate in a batch Electrocoagulation reactor using stainless steel (SS) electrode. EC technology depends on so many factors such as electrode material, initial pH, applied voltage, inter-electrode distance, and electrolysis time. From the experimental work, results reveal that the maximum percentage of removal achieved were COD and Color 73.5% and 65.0% respectively and increasing BOD/COD ratio 0.11 to 0.62. The optimum inter-electrode distance 1cm with electrode surface area 35 cm2 and optimum electrolysis time of 120 min at optimum applied voltage 12V, stirring speed 250 rpm and pH 9.8. These results proved that the EC process is an appropriate and proficient approach for treating the landfill leachate.


2018 ◽  
Vol 7 (1) ◽  
pp. 45-47
Author(s):  
S.Manikandan . ◽  
R.Saraswathi . ◽  
A.Mohammed Siraj Ansari .

The electrochemical treatment was an effective technique in dye processing and it can be enforced to remove color from dye solution. An Experimental setup was made for electrochemical treatment of synthetically prepared Reactive Black B dye in batch mode operation using aluminum electrodes. Based on probability the operating parameters such as pH, Concentration, Electrolysis time, Retention time were determined from which the color removal efficiency (CRE) is optimized. The maximum color removal efficiency of Reactive black B dye was achieved at 98.23% for the concentration of 10mg/l.


Author(s):  
Savita Dubey ◽  
Amita Joshi ◽  
Rashmi Trivedi ◽  
Parmesh Kumar Chaudhari ◽  
Dharm Pal ◽  
...  

Abstract In the current scenario treatment of industrial waste water is big challenge especially waste water that contain high organic load. Hydrogen peroxide assisted electrocoagulation (EC) process provides better result to treat highly polluted wastewater as compared to EC alone. However, hydrogen peroxide is well known as a strong oxidant, which cast a potential threat to human health. To overcome this problem hydrogen peroxide has been used here for treatment of wastewater in small quantity, and that consume during the process. Therefore the harmful effect of hydrogen peroxide in human and aquatic life could be minimized. This work is an attempt to treat biodigester effluent (BDE) using H2O2 assisted EC processes with respect to chemical oxygen demand (COD) and color reductions. To perform this experiment both iron and aluminum electrodes are used as an electrode material in the presence of H2O2. In case of iron electrode the maximum COD and color reduction efficiency of 98.3 and 83.6% was achieved at the cost of 1.5 Wh/dm3 energy consumption while maximum COD and color removal efficiency of 96.8 and 77.1% with 1.7 Wh/dm3 of energy consumption was observed in the aluminum electrode based EC process. A part from this conventional biological process (i.e., activated sludge treatment, ponds, and lagoon etc.) and physiochemical treatment process (i.e., coagulation, adsorption) provided treatment efficiency of 40–80% hence hydrogen peroxide assisted EC process should a better choice to treat distillery effluent. Furthermore, hybrid EC process was also performed with iron used as anode and aluminum as cathode in the presence of H2O2. Iron electrode based peroxi-EC process provided better result at optimum operating conditions; current density of 114 A/m2, initial COD concentration of 12,000 mg/dm3, initial pH of 7.3, H2O2 concentration of 120 mg/dm3, stirring speed of 120 rpm and electrolysis time of 90 min. The cost estimated for operation is 1.56 US $/m3. Finally, sludge analysis and cost optimization are also incorporated in this article.


2017 ◽  
Vol 5 (7) ◽  
pp. 348-353
Author(s):  
Krishna M. K ◽  
Manjunath H.N ◽  
Ayesha Siddiqa

The various electrodes such as iron, aluminium, stainless steel and graphite are used in this study. Main objectives of the present paper is to evaluate the removal of COD, pH, TDS and oil and grease from the automobile wastewater by Electro coagulation using iron as Monopolar configuration at different voltages and electrolysis time. To study the effect of inter electrode spacing and effect of different initial pH for the removal of selected parameter at constant voltage for the iron electrode. The removal efficiency decreases with increase in electrode spacing as 71.2% of COD, 96.5% of TDS and 88.76% of oil and grease removal was achieved with iron electrode.


2012 ◽  
Vol 260-261 ◽  
pp. 856-861
Author(s):  
Xiao Long Li ◽  
Tao Tao Li ◽  
Feng Qin Zhang

Electrocoagulation(EC) process is an effective method for the removal caramel from wastewater. In this study, the removal of caramel pigment from sauce wastewater has been studied by EC treatment with aluminum electrodes. The effects of electrolysis time and the initial pH of the sauce wastewater on the removal efficiency of caramel pigment have been investigated. The results indicated that the initial pH of sauce wastewater has a significant effect on the removal efficiency. When the initial pH was kept in the range of 4-8, all aluminum cations produced at the anode formed the insoluble coagulants, leading to a more effective treatment. Flocs formed by the EC process were analyzed by FTIR and the results have been explained.


Sign in / Sign up

Export Citation Format

Share Document