scholarly journals Elimination of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/diatomite

2016 ◽  
Vol 8 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Yupan Yun ◽  
Zifu Li ◽  
Yi-Hung Chen ◽  
Mayiani Saino ◽  
Shikun Cheng ◽  
...  

Abstract Because total nitrogen (TN), in which nitrate (NO3–) is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L), NO3– elimination has attracted considerable attention. In this research, the novel diatomite-supported palladium-copper catalyst (Pd-Cu/diatomite) with zero-valent iron (Fe0) was tried to use for catalytic reduction of nitrate in wastewater. Firstly, specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution) were optimized for nitrate reduction in artificial solution. Secondly, the selected optimal conditions were further employed for nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results showed that 67% of nitrate removal and 62% of N2 selectivity could be obtained under the following conditions: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu), 4 g/L catalyst, 2 h reaction time and pH 4.3. Finally, the mechanism of catalytic nitrate reduction was also proposed.

2016 ◽  
Vol 73 (11) ◽  
pp. 2697-2703 ◽  
Author(s):  
Yupan Yun ◽  
Zifu Li ◽  
Yi-Hung Chen ◽  
Mayiani Saino ◽  
Shikun Cheng ◽  
...  

Total nitrogen, in which NO3− is dominant in the effluent of most wastewater treatment plants, cannot meet the requirements of the Chinese wastewater discharge standard (<15 mg/L), making nitrate (NO3−) elimination attract considerable attention. In this study, reductant iron (Fe0) and γ–Al2O3 supported palladium–copper bimetallic catalysts (Pd–Cu/γ–Al2O3) were innovatively used for the chemical catalytic reduction of nitrate in wastewater. A series of specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution) were optimized for nitrate reduction in the artificial solution, and then the selected optimal conditions were further applied for investigating the nitrate elimination of secondary effluent of a wastewater treatment plant in Beijing, China. Results indicated that a better catalytic performance (74% of nitrate removal and 62% of N2 selectivity) could be obtained under the optimal condition: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu), 4 g/L catalyst, 2 h reaction time and pH 5.1. It is noteworthy to point out that nitrogen gas (N2) predominated in the byproducts without another system to treat ammonium and nitrite. Therefore, the chemical catalytic reduction combining Fe0 with Pd–Cu/γ–Al2O3 could be regarded as a better alternative for nitrate removal in wastewater treatment.


2012 ◽  
Vol 573-574 ◽  
pp. 659-662
Author(s):  
Hao Wang

In Tangshan area, the secondary effluent of wastewater treatment plants was used for this study. Horizontal zeolite wetland was carried out treating it. Hydraulic loading rate was the parameters for analyzing the nitrogen and phosphorus removal efficiency of pollutants from the secondary effluent of wastewater treatment plant. Zeolite constructed wetlands showed different behaviors for nitrogen and phosphorus removals.Under the optimum hydraulic loading rate, the primary pollutions were removed to a large extent.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 717-726 ◽  
Author(s):  
R. Pujol ◽  
P. Boutin

Activated sludge bulking often occurs in French wastewater treatment plants. Precise identification of filaments and better knowledge of their ecophysiology helped to clarify their re1ations with the operational conditions of plants. Effective techniques were therefore developed for control. The “mixing zone” is suitable for many cases of bulking ocurring in extended aeration plants (the most common type in France). A test method was developed to provide the elements for dimensioning the system. Unreserved cooperation between the owner of the plant, the manager, the SATESE (Service of technical aid to wastewater treatment plant managers) and specialized laboratories is required to implement such measures. Some cases, about which CEMAGREF was consulted, were examined; three of them are detailed and reasons for success or fai1ure are analysed. Seeking funds for the works too often leads to excessive delays.


2010 ◽  
Vol 113-116 ◽  
pp. 651-654
Author(s):  
Ben Chao Jiang ◽  
Fang Ma ◽  
Li Wei ◽  
Jing Bo Guo ◽  
Ang Li

The minimum temperature in winter is under -30oC in the northern hilly regions. It is harmful for the municipal wastewater treatment in winter. According to previous reports, the effects caused by the low-temperature in municipal wastewater treatment plant are summarized, and improvements are put forward. Improving the efficiencies of municipal wastewater treatment is essential and significant in the northern hilly regions.


1999 ◽  
Vol 40 (8) ◽  
pp. 115-122 ◽  
Author(s):  
Eric Houbron ◽  
Michel Torrijos ◽  
Bernard Capdeville

The urban wastewater treatment plants of the 21st century will have to consider the removal of the carbon, nitrogen and phosphorus. On one hand, the usual exogenous carbon source for tertiary treatment are generally supplied as methanol, ethanol, acetic acid, etc. On the other hand, the anaerobic wastewater treatment plant produces a biogas which contains up to 90 % of methane and which could be used as a cheap carbon source for denitrification. The first step of this work conducted in batch culture with or without copper, has shown that a consortium of methanotrophic and denitrifying bacteria are involved in this process. The methanotrophic bacteria oxidises methane under aerobic conditions via a specific enzyme (Methane Mono Oxygenase) and produces a soluble organic carbon in the liquid phase available for the denitrification. During the batch culture, when dissolved oxygen concentration decreases below 1 mg/l, a maximum denitrification rate of 3.3 mg N-NO3/l.h was obtained with 80 μg/l of copper in the medium. The consumption rate of methane was 3.5 mmol CH4/l.h. The molar ratio of the oxygen/methane consumed was 1.27, and the mass ratio of C-CH4 consumed to N-NO3 eliminated was 10.9. During chemostat culture, denitrification on synthetic and real nitrifying water was tested. The stability of the consortium has been verified under different culture conditions. The variation of the dilution rate showed that the maximum one was 0.16 h−1. The specific denitrification rate obtained with synthetic and real water were respectively 6.1 and 9.47 mg N-NO3/TSS.h, with a C/N mass ratio of 3.6 and 4.6. In chemostat, culture the efficiency of the methane oxidation and the denitrification was improved.


2021 ◽  
Vol 11 (22) ◽  
pp. 10836
Author(s):  
Fredy Kristjanpoller ◽  
Nicolás Cárdenas-Pantoja ◽  
Pablo Viveros ◽  
Rodrigo Mena

Wastewater treatment is a critical and necessary task every human settlement is obligated to address. If not, the consequences might be catastrophic, not just for humans but for the ecosystems as well, pushing research into finding new ways to improve wastewater treatment processes to make them safer and more efficient. Hence, there is a need to address matters, such as reliability and maintainability of Wastewater Treatment Plants (WWTP), when analyzing the availability and operational conditions. These should be addressed by analyzing the plant operational effectiveness impact (P-OEI), and in this article specifically, a WWTP study case to identify design flaws or improvement opportunities. A vital aspect of a complex system is to determine the contribution to resilience, reliability, and availability of every element embedded in the system. This is performed by adapting and applying the P-OEI methodology and real data of a WWTP located in Chile. This methodology breaks down the system into several levels of disaggregation similar to RBD methodology, analyzing the upstream for availability and the downstream for the P-OEI analysis from the system itself to the individual elements within subsystems. The potential impact on the overall system’s lack of efficiency is also quantified by an Expected Operational Impact (EOI) index, which is also calculated by the methodology. The P-OEI and EOI analyses performed in this study are powerful tools to assess the design and performance of complex systems and WWTP in particular.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


Sign in / Sign up

Export Citation Format

Share Document