N-nitrosamines, emerging disinfection by-products of health concern: an overview of occurrence, mechanisms of formation, control and analysis in water

2014 ◽  
Vol 15 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Y. Kadmi ◽  
L. Favier ◽  
D. Wolbert

The presence of N-nitrosamines in water bodies used for drinking water purposes may present a more serious risk for humans than regulated disinfection by-products (DBPs) species. Hence, understanding and controlling the incidence of N-nitrosamines represents a contemporary challenge to the water industry. Although many of these molecules potentially formed as DBPs are detected in chlorinated natural waters, few studies have focused on the formation, occurrence, and analysis of N-nitrosamines. Until now, nine N-nitrosamines have been detected in water samples; N-nitrosodimethylamine is the most frequently reported nitrosamine in drinking water. Although there are currently no federal regulations for these molecules in drinking water, this family of N-DBPs is one of three potential groups of contaminants highlighted for possible regulatory action in the near future. This paper gives an overview of the current knowledge concerning the occurrence, precursors, and formation mechanisms of N-nitrosamines in water. In addition, the existing regulations are described and relevant analytical methods used for their quantification in water samples are also discussed.

10.14311/334 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Grünwald ◽  
B. Šťastný ◽  
K. Slavíčková ◽  
M. Slavíček

Recent drinking water regulations have lowered the standards for disinfection by-products and have added new disinfection by-products for regulation. Natural organic matter (NOM), mainly humic compounds, plays a major role in the formation of undesirable organic by-products following disinfection of drinking water. Many disinfection by-products have adverse carcinogenic or mutagenic effects on human health. This paper deals with the formation potencial of disinfection by-products in water samples taken from different places in the Flaje catchment.


2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


2007 ◽  
Vol 6 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Walt Bayless ◽  
Robert C. Andrews

Haloacetic acids (HAAs) are produced by the reaction of chlorine with natural organic matter and are regulated disinfection by-products of health concern. Biofilms in drinking water distribution systems and in filter beds have been associated with the removal of some HAAs, however the removal of all six routinely monitored species (HAA6) has not been previously reported. In this study, bench-scale glass bead columns were used to investigate the ability of a drinking water biofilm to degrade HAA6. Monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA) were the most readily degraded of the halogenated acetic acids. Trichloroacetic acid (TCAA) was not removed biologically when examined at a 90% confidence level. In general, di-halogenated species were removed to a lesser extent than the mono-halogenated compounds. The order of biodegradability by the biofilm was found to be monobromo > monochloro > bromochloro > dichloro > dibromo > trichloroacetic acid.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fatlume Berisha ◽  
Walter Goessler

In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.


2020 ◽  
Vol 5 (2) ◽  
pp. 138-147
Author(s):  
S. L. Afegbua ◽  

The Sustainable Development Goal on sanitation aims to achieve universal access to good health, affordable drinking water, sanitation and an end to open defeacation by 2030. The recent ranking of Nigeria as first globally for open defecation is of public and environmental health concern. This study assessed the sanitary condition and the microbiological quality of well and surface waters of Panhauya community and Ahmadu Bello University farm, Zaria, and the antibiogram of the bacterial isolates.. Based on the WHO criteria, the sanitary inspection showed that 16.7%, 54.2%, 25% and 4.2% of the water sampling points had a very high, high, intermediate and low risk of contamination respectively. Occurrence of Escherichia coli, Giardia lamblia, Entamoeba histolytica, Pseudomonas aeruginosa, Salmonella spp and Vibrio cholerae in water samples from Panhuaya community was 87.5%, 75%, 68.8%, 50%, 25% and 12.5% respectively. In ABU farm Shika, the occurrence was; E. coli (75%), E. histolytica (63%), G. lamblia and Salmonella spp. All E. coli isolates exhibited high multidrug resistance to antibiotics screened with a MAR index of 0.3-0.8. The drinking water sources in Panhuaya and ABU farm were unsafe and the presence of these pathogens in the water samples may be attributed to a number of factors including poor sanitation, manure application and open defecation practice. This indicates a public health risk to the residents and emphasises the need for safe water supplies sanitation and antibiotic stewardship. Keywords: Well water; surface water; sanitary inspection; open defecation; water-borne pathogens; Zaria.


2015 ◽  
Vol 3 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Tasnia Ahmed ◽  
Sagar Baidya ◽  
Mrityunjoy Acharjee ◽  
Tasmina Rahman

Water borne disease outbreaks associated with the drinking of unsafe water, containing pathogenic bacteria of fecal origin, is common in densely populated countries like Bangladesh. Present study was attempted to detect indicator bacteria from drinking water samples for the presumptive occurrence of fecal contaminations that are responsible for health associated problems. Therefore, a laboratory scale qualitative analysis through most probable number (MPN) method was employed. The indicator bacterium Escherichia coli were detected in 24 water samples out of 75 samples as revealed consequently by the presumptive, confirmed and completed tests of MPN method. Other Gram negative bacteria found in the samples included Alcaligenes faecalis, Pseudomonas spp., Klebsiella spp. and Proteus spp. Almost all of the identified bacteria showed resistance against commonly used antibiotics which is of significant health concern. DOI: http://dx.doi.org/10.3329/sjm.v3i1.22745 Stamford Journal of Microbiology, Vol.3(1) 2013: 9-16


Author(s):  
Stuart W. Krasner

When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N -nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.


Author(s):  
Elizabeth Webb ◽  
Carol Stewart ◽  
Erie Sami ◽  
Samuel Kelsey ◽  
Peggy Fairbairn Dunlop ◽  
...  

Abstract Large variations in fluoride concentrations exist in natural waters, many of which are the source of community drinking-water supplies. Determining fluoride concentrations in community drinking waters can be challenging in developing Pacific countries such as Vanuatu that have limited laboratory capacity. Knowledge of naturally elevated fluoride concentrations that cause irreversible, adverse health outcomes may allow communities the opportunity to treat and manage their drinking-water supplies. Community drinking-water samples (n = 69), sourced from groundwaters, roof catchment rainwaters, surface waters and springs, were sampled on Tanna Island, Vanuatu between 2017 and 2020. In an 18 km2 area of Western Tanna, a set of 30 groundwater-based drinking-water samples had a median fluoride concentration of 3.3 mg/L, with 20 samples >1.5 mg/L and seven samples >4.0 mg/L. These concentrations increase the risk of dental and skeletal fluorosis, respectively. Repeat resampling at five sites showed little variation over the sampling period. Rainwater-fed drinking-water supplies were lower overall and highly variable in fluoride concentrations (<0.05–4.0 mg/L, median of 0.53 mg/L), with variable inputs from volcanic emissions from Yasur volcano. We recommend a comprehensive oral health and bone health study for the whole island to determine adverse health effects of excess fluoride in this vulnerable population.


2021 ◽  
Vol 3 (1) ◽  
pp. 10-18
Author(s):  
Iuliana Paun ◽  
◽  
Florentina Laura Chiriac ◽  
Vasile Ion Iancu ◽  
Florinela Pirvu ◽  
...  

Chlorine is widely used in Romania and all over the world as a disinfectant of drinking water. During the chlorination process, the natural organic matter and inorganic ions react with chlorine forming disinfection by-products (DBPs). The predominant organic disinfection by-products are trihalomethanes (THMs) while the main inorganic disinfection by-products are chlorate and chlorite ions. THMs were detected in all investigated drinking water samples from Bucharest distribution system with values from 27.8 µg/L up to 75.1 µg/L, which are below the maximum concentration value admitted by Romanian drinking water legislation of 100 µg/L. Chloroform constitutes the major component in total THMs concentration found in all tested drinking water. Chlorate and chlorite anions were not detected in any of the investigated drinking water samples. THMs concentration was correlated with total organic carbon (TOC), residual chlorine and chloride.


Author(s):  
Udoh I.P., Iloghalu ◽  
Iloghalu, Ijenwa Amarachi ◽  
Aladenika S.T.

Infectious diseases control of recent is a major health concern globally due to high increase in number of microorganisms that are resistant to conventional antimicrobial agents. This study aimed at ascertaining the microbiological quality and multiple antibiotic resistance profile of E. coli strains isolated from different sources of drinking water. A total of 136 water samples from different drinking water sources, including the storage tanks (the school and the commercial storage tank), sachet and bottle water were obtained from University of Nigeria Enugu Campus and analyzed. Standard microbiological techniques were employed for bacteria isolation, identification and antibiogram. From the water samples collected 25 E. coli strains were isolated. The school storage tanks account for 60% of the isolates, while bottled water showed no growth. 92% of the E. coli isolated showed resistance to the tested antibiotics. Resistant were higher with Augmentin (64%), Chloramphenicol (48%) and Streptomycin 11 (44%) while most were sensitive to Tarivid and Perfloxacine (100%). Isolates from school storage water sources showed the highest resistance to Augmentin (76.5%) while those from commercial storage water sources showed the highest resistance to Streptomycin (66.7%). Out of the 23 (92%) antibiotics resistant E. coli isolates 18 (78.3%) were multidrug resistance (MDR). The school storage water sources had the highest number of MDR E. coli 14 (77.8%) followed by the commercial storage water sources 4 (22.2%), but the sachet and bottled water had no MDR E. coli. In conclusion, drinking water may potentially contribute to the source of multidrug resistance E. coli in this community


Sign in / Sign up

Export Citation Format

Share Document