scholarly journals Effects of culvert length and flow rates of raw water transport on biofilm development and water quality

Author(s):  
Ruikang Xue ◽  
Tinglin Huang ◽  
Gang Wen ◽  
Junle Yan ◽  
Qian Liu

Abstract Long-distance water transfer projects are important for water allocation. To enhance our understanding of biofilm growth and changes in water quality during raw water transfer, raw water through long-distance non-full culvert at flow rates of 1.4−2.0 m/s was studied.The results revealed that: (1) the biofilm total cell number (TCC) and heterotrophic plate count (HPC) were the highest at a flow rate of 1.5 m/s, which were 3.7E + 04 cells /cm2 and 1.1E + 03 CFU/cm2, respectively; (2) proteobacteria had the highest relative abundance (RA) among all samples, and the RA in biofilm (78.85%) was higher than that in water (48%−59%); (3) when the pollutants and biofilm were partially shed, the total phosphorus (TP), permanganate index (CODMn), and dissolved organic carbon (DOC) increased by 0.011, 0.36, and 0.5 mg/L at most, respectively; and (4) dissolved oxygen (DO) was sufficient during non-full flow water transport and nitrification occurred. The highest removal rates of ammonium nitrogen (NH+4-N) and nitrous nitrogen (NO2--N) reached 27.16% and 66.76%, respectively. At the flow rates of 2.0 m/s, the efficiency decreased to 10.47% and 41.25%, respectively, due to the shedding of biofilm.

2013 ◽  
Vol 69 (3) ◽  
pp. 587-594 ◽  
Author(s):  
Dongguo Shao ◽  
Haidong Yang ◽  
Yi Xiao ◽  
Biyu Liu

A new method is proposed based on the finite difference method (FDM), differential evolution algorithm and Markov Chain Monte Carlo (MCMC) simulation to identify water quality model parameters of an open channel in a long distance water transfer project. Firstly, this parameter identification problem is considered as a Bayesian estimation problem and the forward numerical model is solved by FDM, and the posterior probability density function of the parameters is deduced. Then these parameters are estimated using a sampling method with differential evolution algorithm and MCMC simulation. Finally this proposed method is compared with FDM–MCMC by a twin experiment. The results show that the proposed method can be used to identify water quality model parameters of an open channel in a long distance water transfer project under different scenarios better with fewer iterations, higher reliability and anti-noise capability compared with FDM–MCMC. Therefore, it provides a new idea and method to solve the traceability problem in sudden water pollution accidents.


Biofilms ◽  
2005 ◽  
Vol 2 (1) ◽  
pp. 19-25 ◽  
Author(s):  
J. Y. Hu ◽  
B. Yu ◽  
Y. Y. Feng ◽  
X. L. Tan ◽  
S. L. Ong ◽  
...  

Biofilm growth within a water distribution system could lead to operational problems such as pipe corrosion, water quality deterioration and other undesirable impacts in water distribution systems. With the high ambient temperatures experienced in Singapore, the operating environment in water distribution systems is expected to be more conducive to biofilm development. We have recently conducted a survey on biofilms potentially present in a local water distribution system.The survey results indicated that residual chlorine (±standard deviation) decreased from 1.49±0.61 mg/l (water plant outlets) to 0.82±0.21 mg/l (block pipes) or 0.18±0.06 mg/l (unit pipes), respectively. Consumed chlorine, instead of residual chlorine, was found to be correlated with biofilm bacterial population. Assimilable organic carbon (AOC) level was 160±66 μg acetate C/l, and AOC:PO4-P:NO3-N was about 8:13:1. Carbon source seemed to be the limiting nutrient for bacterial growth. The concentration of iron increased from <0.04 mg/l (water plant outlets) to 0.22±0.10 mg/l (all sites). All samples showed negative results in a coliform test. The average heterotrophic plate count (HPC) for the suspended bacteria was 20 colony-forming units (c.f.u.)/ml (2 days, 35 °C) or 290 c.f.u./ml (8 days, 35 °C). The average HPC for the biofilm bacteria was 6500 c.f.u./cm2 (2 days, 35 °C) or 29000 c.f.u./cm2 (8 days, 35 °C). High HPC values in samples B2a, B2b and B3a (representing biofilm samples at site 2 from block/unit pipes and biofilm samples at site 3 from block pipes, respectively) illustrated that the relevant sample sites had a higher probaboility of biofilm growth.


2017 ◽  
Vol 18 (2) ◽  
pp. 638-647 ◽  
Author(s):  
Huijin Zhang ◽  
Yanling Yang ◽  
Xing Li ◽  
Yongwang Liu ◽  
Li Zhao

Abstract Biological safety of hot water is important, and it is affected by pipeline material to a certain degree. Polypropylene random (PPR), polyvinyl chloride (PVC) and stainless steel (SS) are the common materials for pipelines in domestic hot water systems (DHWS), and biofilm growth characteristics, and biofilm microbial communities and biological diversity on the walls of pipelines are affected by the pipeline materials to a certain extent. In this paper, the effects of different materials on the growth characteristics and diversity of microbial communities were studied. The results showed that after about 60 days, the bacteria of the biofilm on the wall of pipelines completed a microbial growth cycle. Compared with PPR and SS, a greater amount of the total number of bacteria, Escherichia coli and heterotrophic plate count (HPC) attached to the PVC pipeline. Although the types of bacteria on the pipelines were similar, the proportions of species were different. Proteobacteria were the dominant bacteria at the phylum level on all the walls of the PPR, PVC and SS pipelines, and the dominant bacteria at the genus level changed before and after the exfoliation of biofilm. Some potential pathogens, such as Pseudomonas and Legionella, were detected in biofilm, so effective biofilm disinfection should be considered to ensure biological safety in DHWS.


2021 ◽  
Vol 13 (4) ◽  
pp. 1834
Author(s):  
Yu Li ◽  
Jinggang Chu ◽  
Guozhen Wei ◽  
Sifan Jin ◽  
Tiantian Yang ◽  
...  

It is important to place water quality sensors along open channels in long-distance water transfer projects optimally for rapid source identification and efficient management of sudden water contamination. A new framework which considers multiple objectives, including earliest detection time, lowest missing detection rate and lowest sensor cost, and combines the randomness of injected contaminant type and contaminant incident consisting of contaminant intrusion location, time and mass, was established to obtain optimal placement of water quality sensor with better robustness in this paper. The middle route of the South-to-North Water Diversion Project in China was chosen as a case study, and it was found that both missing detection rate and detection time decrease with sensor cost gradually; furthermore, given the higher detecting precision, the detection accuracy and efficiency would be improved, a smaller number of water quality sensors would be needed, and the ten key placement positions where sensor with different detecting precision placed could be identified. Under the constraints of the allowable maximum missing detection rate, 1.00%, and detection time, 120.00 min, the detecting precision of 0.20 mg/L and 38 sensors placed could be selected as the optimal sensor placement scheme. Finally, with the consideration of contaminant uncertainty, the sensor placement scheme with better robustness could be constructed. The proposed framework would be helpful in solving the problem of water quality sensor placement with high practicality and efficiency in long-distance water transfer projects.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2407
Author(s):  
Yuxuan Zhang ◽  
Ranhang Zhao ◽  
Haofang Wang ◽  
Tao Peng ◽  
Huaqing Zhao

Water quality assurance is the primary factor for the successful operation of water diversion projects across river basins. The rapid prediction of water pollution is the basis for timely and effective emergency control and disposal measures. In China, since the open channels intersect with numerous waterways and traffic arteries, water transfer projects are prone to sudden water pollution accidents. In this paper, the rapid prediction method was developed for sudden water pollution accidents that possibly occurred in the East Route of the South-to-North Water Diversion Project (ERP) in Shandong Province. With the empirical formula of the pollution transfer law, a rapid prediction model of water quality (WQRP) was established based on the simulation of the typical accidents in the main channel. Finally, four typical accidents were selected as application examples, and the prediction results were compared with the results from a computer numerical simulation to demonstrate the validity of the model. The results showed that the prediction results by the WQRP model meet the accuracy requirements. This method is of great significance for providing water transport security in the extreme conditions of long-distance water transfer projects.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


2002 ◽  
Vol 2 (2) ◽  
pp. 131-137
Author(s):  
N.D. Basson ◽  
C.F. Schutte

The paper deals with laboratory and full-scale studies aimed at optimising treatment processes at the Balkfontein plant of Sedibeng Water in South Africa. The raw water is highly eutrophic and contains a large fraction of treated effluent from domestic and industrial sources as well as agricultural runoff. The eutrophic nature and changing raw water quality give rise to many operational difficulties and high treatment costs as well as problems with the final water quality. Optimisation of the coagulation and chlorination processes was seen as a cheaper solution to these problems than to install advanced processes such as ozonation and activated carbon adsorption that would add greatly to treatment costs. The laboratory studies indicated that through optimisation of coagulation-flocculation and by replacement of pre-chlorination by intermediate chlorination (after primary sedimentation) most of the treatment problems could be solved and final water of the required quality produced without a large increase in treatment costs.


2011 ◽  
Vol 11 (4) ◽  
pp. 481-489
Author(s):  
S. Krause ◽  
A. Obermayer

The public drinking water supply of southern Germany is characterized by a rather decentralized network. Due to the hydrogeological setting in these parts of Germany many of the small water works with an average capacity of 50 m3/h have to treat raw water extracted from karstic or cliffy aquifers. These raw waters tend to be contaminated with particles and pathogens acquired during snowmelt or after strong rainfalls. In the last decade ultrafiltration has become the technology of choice for the removal of the aforementioned contaminants. Flux decline caused by unanticipated membrane fouling is the main limitation for the application of ultrafiltration membranes. This paper describes how membrane fouling phenomena can be predicted by using a statistical approach based on data from large scale filtration systems in combination with field and lab experiments on raw water quality and membrane performance. The data defines water quality and respective fouling phenomena both in technical scale filtration plants and in lab experiments of eleven different raw waters. The method described here is more economically feasible for small water works when compared to typical pilot experiments that are used for high capacity water works.


1998 ◽  
Vol 37 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. E. Nienhüser ◽  
P. Braches

Refilling of the Kerspe-Talsperre reservoir after restoration of the dam caused severe problems in water quality and supply due to a long-lasting ice-cover period and minimal precipitation. Unusually short spring overturn, high algal mass in spring and certainly the overflooding of the sediment, which had not been removed, caused a tremendous oxygen deficit in early summer. The whole hypolimnion turned anoxic and even in the metalimnion oxygen declined to a minimum. Manganese and iron reached high concentrations. Despite the poor water quality, raw water was urgently needed for the water supply and was pumped from the epilimnion during the clear water phase and in July when algal biomass was low. In the middle of August holomixis was induced artificially in order to improve water quality. The decline in algal production during and after artificial mixing was probably caused by light limitation of the algae.


Sign in / Sign up

Export Citation Format

Share Document