scholarly journals Experimental analysis of infiltration process and hydraulic properties in soil and rock profile in the Taihang Mountains, North China

Author(s):  
Jiansheng Cao ◽  
Hui Yang ◽  
Yong Zhao

Abstract In this research, an experiment was conducted in the Taihang Mountains in China with a self-designed automatic soil and rock water infiltration monitoring system and a time domain reflectometry (TDR) device to analyze the infiltration process of disturbed soil and rock profile under constant head, unsaturated seepage properties and permeability coefficient of discontinuous rock masses. It was found that the infiltration process curve has an obvious fluctuation in the late stage of unsaturated seepage (after 18:00 p.m. on March 20th) which not only reflects the temporal variation of infiltration rate, but the spatial variation of rock structure. The lateral soil water of soil and rock dual-texture mainly flows in the interface of soil and rock. The infiltration rate of soil water can be as high as 2.42 × 10−4 cm/s, accounting for about 20% of the stable infiltration rate. After the water infiltrated in the lower rock layers, the water mainly stored and flowed in the fissure network in the rocks, but not completely fill the whole fissure network. Firstly, the local priority channel is adopted to infiltrate. With the increasing of rock saturation, the local priority channel will also expand and finally extend to the whole fissure network. The permeability coefficient of the soil and rock dual-texture in the study area is 1.26 × 10−3 cm/s.

Author(s):  
Vikram Kumar ◽  
Barkha Chaplot ◽  
Padam Jee Omar ◽  
Shaktibala S. ◽  
H. Md. Azamathulla

Abstract The infiltration process plays a key role in designing groundwater recharge, irrigation, and drainage systems, and contamination evaluation is controlled by numerous factors, among which soil physical properties and land use & land cover (LULC) are the prime factors. A comprehensive understanding of the spatial water infiltration characteristics over the soil which is site-specific and more complex due to non-uniformity could enhance the agriculture water use efficiency and mitigate water-related issues. The present study deals with the measurement of field infiltration characteristics using a mini disc infiltrometer in all 24 blocks of Gaya districts, Bihar, which covers a wide spectrum of soil types. Results showed that the average cumulative infiltration rate (IR) for the study area varies between 0.38 and 2.20 cm/min with an average rate of 1.16 cm/min. The initial IR among all blocks was found to be high but decreased gradually with each successive reading. Moreover, the land use under forest cumulative IR was more than the cumulative IR for urban and grassland. Eight blocks (33.3%) have an IR more than the average infiltration of the area which is good for storing the water in the aquifer and suggested constructing a recharge structure. Further investigation revealed a small IR in the inundated area, because of the maximum soil water table. The ready-to-use map showing the IR for the district is prepared which could be used by any decision-taking during the high or low rainfall, understanding the hydrological process, development of any reference guide for farmers for increasing the agriculture productivity and soil-water management.


2017 ◽  
Vol 14 (6) ◽  
pp. 1076-1085 ◽  
Author(s):  
Dong-bing Cheng ◽  
Lin-yao Dong ◽  
Feng Qian ◽  
Bei Sun

2014 ◽  
Vol 988 ◽  
pp. 498-501
Author(s):  
Fang Shao ◽  
Dong Wen Liu ◽  
Shu Jiang ◽  
Zhi Yong Qiao ◽  
Shan Lin

Infiltration is an important indicator of water and nutrient holding capacity of soil. Lap infiltration apparatus was used to measure vertical water infiltration process in the third year of Yellow River sediment filling reclamation. Five infiltration models were selected to fit the infiltration characteristic curves, analyzed the infiltration experimental results during 3 years of reclamation. The results showed that, the mean initial infiltration rate and mean stable infiltration rate of filling farmland in the third year were 17.06mm/min and 2.38mm/min, and were 8.81mm/min and 0.99 mm/min higher than that of the first year, 3.58mm/min and 0.39mm/min higher than that of the second year. It indicated that, infiltration rate of filling farmland increased significantly after cultivation due to the farming practices and roots development, and the role of soil microorganisms and small animals. Filling farmland has some self-recovery capabilities. In addition, Kostiakov model has better fitting effect than Mezencev model for both filling farmland and control farmland.


2011 ◽  
Vol 68 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Carlos Rogério de Mello ◽  
Léo Fernandes Ávila ◽  
Lloyd Darrell Norton ◽  
Antônio Marciano da Silva ◽  
José Márcio de Mello ◽  
...  

Soil water content is essential to understand the hydrological cycle. It controls the surface runoff generation, water infiltration, soil evaporation and plant transpiration. This work aims to analyze the spatial distribution of top soil water content and to characterize the spatial mean and standard deviation of top soil water content over time in an experimental catchment located in the Mantiqueira Range region, state of Minas Gerais, Brazil. Measurements of top soil water content were carried out every 15 days, between May/2007 and May/2008. Using time-domain reflectometry (TDR) equipment, 69 points were sampled in the top 0.2 m of the soil profile. Geostatistical procedures were applied in all steps of the study. First, the spatial continuity was evaluated, and the experimental semi-variogram was modeled. For the development of top soil water content maps over time a co-kriging procedure was used having the slope as a secondary variable. Rainfall regime controlled the top soil water content during the wet season. Land use was also another fundamental local factor. The spatial standard deviation had low values under dry conditions, and high values under wet conditions. Thus, more variability occurs under wet conditions.


2014 ◽  
Vol 641-642 ◽  
pp. 183-186
Author(s):  
Shu Yan ◽  
Juan Gao ◽  
Zhong Yuan Zhang ◽  
Feng Lin Zuo ◽  
Wei Hua Zhang

In order to relieve water shortage, many countries develop water-saving industries and increase water use rate of irrigation. The research on soil water infiltration has important effect on infiltration and runoff, as well as for irrigation. The study carried out in Liangping district of Chongqing by using double ring infiltration method and exploring the reasonable infiltration model in the study area. The relationship of initial soil moisture and irrigation coefficient was studied as well. The results showed that: the Kostiakov empirical formula could simulate the process of soil water infiltration properly. The soil infiltration rate of Liangping is 0.0320cm/min in the selected location.


Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.


Author(s):  
Lucas dos Santos Batista ◽  
Raimundo Rodrigues Gomes Filho ◽  
Clayton Moura de Carvalho ◽  
Alceu Pedrotti ◽  
Igor Leonardo Nascimento Santos ◽  
...  

Watersheds are units of planning and environmental management having a great importance in the management of water resources and their use. To this end, knowledge about the soil's physical and water attributes is of paramount importance in the context of water dynamics in aquifer recharge areas. Water infiltration rate into the soil is considered an important variable in the hydrological cycle, as the increase in this process can lead to a reduction in erosion and consequently greater groundwater recharge. Thus, the present work aimed to evaluate the soil water infiltration rate in the phytophysiognomy of the Poxim River basin in the State of Sergipe, in the agriculture, eucalyptus and forest areas, and to observe the effect of the infiltration water rate in areas of no-till, minimum and conventional cultivation. The soil water infiltration rate was obtained through the use of double cylinder infiltrometer and estimated through the mathematical models of Kostiakov, Kostiakov-Lewis, Horton and Philip. When making comparisons between the models for estimating of soil water infiltration rates, the Horton model showed a better fit compared to the other models used, and the type of soil cover that obtained the highest infiltration rate was the forest. No-till areas provided higher water infiltration rates in the soil, contributing to greater groundwater recharge.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1523 ◽  
Author(s):  
Masato Oda ◽  
Burhanuddin Rasyid ◽  
Hide Omae

Crop residue incorporation increases stable soil pores and soil water infiltration and reduces surface water runoff and soil erosion. However, few studies have examined the relationship between crop residue incorporation and water infiltration. A previous study showed that water infiltration increases depending on the quantity of applied wheat straw. In this study, we examined whether the relationship is applicable to different crop residues in a crop rotation. We grew corn, rose grass, and okra in crop rotation under plastic film houses and measured the water infiltration rate at the time of ridge making. A strong correlation was found between the quantity of applied residue and the soil water infiltration rate (r = 0.953), although there are outliers in the case of no prior crop. However, aboveground biomass of the prior crop showed a stronger correlation with water infiltration rate (r = 0.965), without outliers. Previous studies have revealed the exponential relation between plant root mass and soil erosion. Our data also show a positive relationship between resistance to erosion and root mass when assuming that aboveground biomass is proportional to the underground biomass. The result also showed that the effect of the prior crop root mass disappears within the next crop period. Our results indicate that maintaining a large root biomass is crucial for reducing soil erosion.


Sign in / Sign up

Export Citation Format

Share Document