scholarly journals Removal of As(V) from aqueous solutions using calcium-alginate microspheres with encapsulated iron nanoparticles

Author(s):  
María Soledad Ruiz-Mora ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
Verónica Martínez-Miranda ◽  
Orlando Hernández-Cristóbal ◽  
Raúl Cortés-Martínez

Abstract This work investigated As(V) removal from aqueous solutions using calcium alginate microspheres with encapsulated iron nanoparticles (FeNPs) in batch systems. The kinetic, equilibrium, and thermodynamic parameters of the adsorption process were evaluated. Adsorbents were characterized using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Zeta Potential techniques. The FeNPs were obtained by a simple and low-cost method and they were successfully encapsulated and uniformly dispersed over the microspheres' surface. Significantly fast adsorption kinetic rates were observed due to microspheres' particle size and FeNPs encapsulation. The chemisorption mechanism was recognized in both adsorbate-adsorbent systems. The As(V) isotherms data suggested that the process is associated with heterogeneous adsorption. Available sorption sites with different adsorption energies were related to the functional groups involved in removing As(V), such as hydroxyl and carboxyl groups. Significantly high adsorption capacities were obtained for both materials, suggesting they can be competitive compared to conventional adsorbents, even at low FeNPs concentrations. Besides FeNPs encapsulation enhancing arsenate removal, higher adsorption was obtained at slightly acidic pH values and, together with their small particle size, suggests that the microspheres have a great potential to be used as arsenate adsorbents in the water treatment for human consumption.

2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2018 ◽  
Vol 18 (4) ◽  
pp. 724
Author(s):  
Rahmah Hashim Abdullah ◽  
Amjed Mirza Oda ◽  
Alaa Rasheed Omran ◽  
Ameer Salem Mottaleb ◽  
Teeba Mudhefer Mubarakah

The performance sawdust as a low cost adsorbent to remove Direct Blue 85 (DB85) dye from aqueous solutions has been evaluated. The characteristic of sawdust analyzed by FTIR and XRD. The removal percentage of this dye was studied at different experimental conditions such as contact time, adsorbent dosage, particle size, temperature, and pH. The optimum removal percentage value was found at pH 2.Temperature also has a positive impact on adsorption, where the adsorption of this dye on the sawdust increased as the temperature increased. High values of correlation coefficient signified that the adsorption of (DB85) dye on the surface of sawdust obey Langmuir and Freundlich adsorption isotherms.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4728
Author(s):  
Lăcrămioara Rusu ◽  
Cristina-Gabriela Grigoraș ◽  
Andrei-Ionuț Simion ◽  
Elena Mirela Suceveanu ◽  
Daniela Șuteu ◽  
...  

Cephalexin (CPX) is recognized as a water pollutant, and it has been listed in a number of countries with a risk factor greater than one. Herein, the present work focused on the synthesis, characterization and biosorption capacity evaluation of Saccharomyces cerevisiae immobilized in calcium alginate as a biosorbent to remove CPX from aqueous solutions. Biosorbent was characterized by SEM and FTIR techniques. Batch biosorption experiments were conducted in order to evaluate the effect of the initial pH, biosorbent dose and CPX initial concentration. The removal efficiency, in considered optimal conditions (pH = 4, CPX initial concentration = 30 mg/L, biosorbent dose = 1 g/L) was 86.23%. CPX biosorption was found to follow the pseudo–second-order kinetics. The equilibrium biosorption data were a good fit for the Langmuir model with correlation coefficient of 0.9814 and maximum biosorption capacity was 94.34 mg/g. This study showed that the synthesized biosorbent by immobilization technique is a low-cost one, easy to obtain and handle, eco-friendly, with high feasibility to remove CPX antibiotic from aqueous solution. The findings of this study indicate that the biosorbents based on microorganisms immobilized on natural polymers have the potential to be applied in the treatment of wastewater.


2009 ◽  
Vol 60 (2) ◽  
pp. 467-474 ◽  
Author(s):  
K. L. Lv ◽  
Y. L. Du ◽  
C. M. Wang

Carboxylated chitosan (CKCTS) was prepared for the removal of Cd(II), Pb(II), and Cu(II) from aqueous solutions. The effects of experimental parameters such as pH value, initial concentration, contact time and temperature on the adsorption were studied. From the results we can see that the adsorption capacities of Cd(II), Pb(II), and Cu(II) increase with increasing pH of the solution. The kinetic rates were best fitted to the pseudo-second-order model. The adsorption equilibrium data were fitted well with the Langmuir isotherm, which revealed that the maximum adsorption capacities for monolayer saturation of Cd(II), Pb(II), and Cu(II) were 0.555, 0.733 and 0.827 mmol/g, respectively. The adsorption was an exothermic process.


Author(s):  
Edi Nasra ◽  
Desy Kurniawaty ◽  
Bahrizal ◽  
Reni Puspita Sari

Adsorpsi Zn (II) daril arutan berair menggunakan kulit pisang (Musa paradisiaca) sebagai biosorben telah dikaji dengan menggunakan metode kolom. Proses adsorpsi dikaji terhadap beberapa parameter,seperti pH, konsentrasil arutan Zn (II) mula-mula, massa biosorben, ukuran partikel biosorben dan laju alir. Kondisi optimum proses adsorpsi Zn (II) dengan biosorben kulit pisang berlangsung pada pH 3 dengan konsentrasi larutan Zn (II) mula-mula 500 mg/L, massa biosorben 0,6 g, ukuran partikel biosorben 250 µm dan laju alir 2 mL/min memiliki kapasita sadsorpsi 7,8567 mg/g. Berdasarkan hasil penelitian dapat disimpulkan bahwa kulit pisang, sebagai limbah, memiliki potensi yang baik sebagai biosorben untuk menyerap logam berat, seperti seng (Zn) dari perairan.   The removal of Zn (II) from aqueous solutions using banana (Musa paradisiaca) shell as biosorbent has been studied with column method. The parameters of adsorption such as pH, initial concentration, biosorbent dose, particle size and flow rate were investigated. The optimum condition was at pH=3, concentration 500 mg/l, biosorbent dose 0,6 g, 250 μm particle size and 2 ml/min flow rate with adsorption capacity 7,8567 mg/g. This study concluded that banana shell, a waste material, have good potential as biosorbent to remove toxic metals like zink from water.


2016 ◽  
Vol 74 (9) ◽  
pp. 2115-2123 ◽  
Author(s):  
S. S. Poguberović ◽  
D. M. Krčmar ◽  
B. D. Dalmacija ◽  
S. P. Maletić ◽  
D. D. Tomašević-Pilipović ◽  
...  

The production of zero-valent iron nanoparticles, using extracts from natural products, represents a green and environmentally friendly method. Synthesis of ‘green’ zero-valent nanoparticles (nZVI) using oak and mulberry leaf extracts (OL-nZVI and ML-nZVI) proved to be a promising approach for Ni(II) and Cu(II) removal from aqueous solutions. Characterization of the produced green nZVI materials had been conducted previously and confirmed the formation of nanosize zero-valent iron particles within the size range of 10–30 nm, spherical with minimum agglomeration observed by transmission electron microscopy and scanning electron microscope morphology measurements. Batch experiments revealed that the adsorption kinetics followed a pseudo-second-order rate equation. The obtained adsorption isotherm data could be well described by the Freundlich model and OL-nZVI showed higher adsorption capacity for Ni(II) removal than ML-nZVI, while ML-nZVI adsorption capacity was higher for Cu(II). In addition, investigation of the pH effect showed that varying the initial pH value had a great effect on Ni(II) and Cu(II) removal. Adsorbed amounts of Ni(II) and Cu(II) increased with pH increase to pH 7.0 and 8.0. This study indicated that nZVI produced by a low-cost and non-toxic method with oak and mulberry leaf extracts could be used as a new material for remediation of water matrices contaminated with Ni(II) and Cu(II).


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Salah Jellali ◽  
Ahmed Amine Azzaz ◽  
Mejdi Jeguirim ◽  
Helmi Hamdi ◽  
Ammar Mlayah

Lignite, as an available and low-cost material, was tested for cadmium (Cd) and copper (Cu) removal from aqueous solutions under various static experimental conditions. Experimental results showed that the removal efficiency of both metals was improved by increasing their initial concentrations, adsorbent dosage and aqueous pH values. The adsorption kinetic was very rapid for Cd since about 78% of the totally adsorbed amounts were removed after a contact time of only 1 min. For Cd and Cu, the kinetic and isothermal data were well fitted with pseudo-second order and Freundlich models, respectively, which suggests that Cd/Cu removal by lignite occurs heterogeneously on multilayers surfaces. The maximum Langmuir’s adsorption capacities of Cd and Cu were assessed to 38.0 and 21.4 mg g−1 and are relatively important compared to some other lignites and raw natural materials. Results of proximate, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), Fourier transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) showed that the removal of these metals occurs most likely through a combination of cation exchange and complexation with specific functional groups. The relatively high adsorption capacity of the used lignite promotes its future use as a low cost material for Cd and Cu removal from effluents, and possibly for other heavy metals or groups of pollutants.


Sign in / Sign up

Export Citation Format

Share Document