Modelling sludge accumulation in anaerobic wastewater stabilization ponds

1995 ◽  
Vol 31 (12) ◽  
pp. 185-190 ◽  
Author(s):  
Muwaffaq M. Saqqar ◽  
M. B. Pescod

Sludge accumulation in the first anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan has been monitored over a period of years. Homogeneous distribution of sludge over the pond bottom has not been achieved. The maximum amount of sludge has not accumulated near the inlet. This is due to scouring of the settled materials near the pond inlet and outlet by the high jet velocity of the incoming flow. A model has been developed to describe the volume of sludge accumulated (VAS) in the primary anaerobic pond. The model has been derived on the basis of the non-biodegradable materials in the settled sludge. VAS has been described in terms of the mass rates (F) of suspended solids and total BOD5 in the raw wastewater and an accumulated sludge coefficient (KAS).

1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2019 ◽  
Vol 23 (10) ◽  
pp. 1783-1786
Author(s):  
MI Ugwoke ◽  
DA Machido ◽  
MB Tijjani

Biofilm producing bacteria are associated with many recalcitrant infections and are highly resistant to antimicrobial agents, hence notoriously difficult to eradicate. This study aimed at determining the biofilm forming capacities of bacterial isolates recovered in the raw wastewater and treated effluent from Wastewater Treatment Plants of Ahmadu Bello University Zaria using Tube Method (TM) and Congo Red Agar (CRA) method; and from the results, among the isolates recovered from the raw wastewater, TM detected 62.5% isolates as positive and 37.5% as negative for biofilm production, CRA detected 37.5% isolates as positive and 62.5% as negative for biofilm production. TM also demonstrated to be more suitable in detecting biofilm producing bacterial isolates from the treated effluent were it detected 50% isolates as positive and 50% as negative. However, CRA detected only 12.5% isolates as positive and 87.5% as negative for biofilm production. We therefore, conclude that the TM is more efficient and reliable for detection of biofilm producing bacteria in the laboratory when compared to CRA method and can be recommended as one of the suitable standard screening method for the detection of biofilm producing bacteria in laboratories.Keywords: Biofilm; Bacteria; Congo red agar and Tube method


2009 ◽  
Vol 60 (9) ◽  
pp. 2439-2445 ◽  
Author(s):  
A. Lynggaard-Jensen ◽  
P. Andreasen ◽  
F. Husum ◽  
M. Nygaard ◽  
J. Kaltoft ◽  
...  

Most wastewater treatment plants have several secondary clarifiers or even more sets of clarifiers including several secondary clarifiers, and in practice it is a well known problem that equal distribution of the load to the single clarifier (or set of clarifiers) is very difficult—not to say impossible—to obtain. If the problem is neglected, quite a big percentage of the total clarifier capacity—measured as the max. allowed hydraulic load—can be lost. Further, return sludge rates are seldom controlled by any other means than as a (typically too high) percentage of the inlet to the wastewater treatment plant—giving a varying and too low suspended solids concentration in the return sludge, which again can lead to an unnecessary use of polymer in the pre-dewatering of the surplus sludge taken from the return sludge. A control of the return sludge rate divided into two parts - control of the total return sludge flow and control of how the total flow shall be distributed between the secondary clarifiers - is able to solve the mentioned problems. Finally, as shall be demonstrated on full scale wastewater treatment plants, a considerable increase of the hydraulic capacity of the treatment plants can be obtained.


Author(s):  
Tomáš Vítěz ◽  
Jana Ševčíková ◽  
Petra Oppeltová

This paper is focused on primary, secondary, and total efficiency evaluation of the wastewater treatment process for chosen small wastewater treatment plant (WWTP) located near the Moravian Karst. Eight wastewater samples were taken during one year in three sampling profiles of WWTP: biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), pH, ammonia nitrogen (N-NH4), nitrite nitrogen (N-NO2), nitrate nitrogen (N-NO3), inorganic nitrogen (Ninorg), total phosphorus (Ptotal). Treatment efficiency by reduction was calculated for all laboratory analyzed indicators and average values were determined for the whole period. Calculated treatment efficiency of indicators BOD, COD and suspended solids was compared with the permissible minimum treatment efficiency of discharged waste water by Government Regulation No. 61/2003 Coll., for the WWTP from 500 to 2 000 PE. Permissible minimum treatment efficiency is not legislatively determined for the primary and secondary level. The results of the work will be used especially to compare results with other similar works.Analyzed values ​​of parameters BOD, COD, suspended solids, N-NH4 at the outflow from wastewater treatment plant were compared with the permissible maximum values at the outflow of the WWTP which the municipality has an obligation to respect according to the decision issued by the District Environment Authority.


2017 ◽  
Vol 35 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Michał Marzec

AbstractThe reliability of removal of selected contaminants in three technological solutions of the household sewage treatment plants was analysed in this paper. The reliability of the sewage treatment plant with activated sludge, sprinkled biological deposit and hybrid reactor (activated sludge and immersed trickling filter) was analyzed. The analysis was performed using the Weibull method for basic indicators of impurities, BOD5, COD and total suspended solids. The technological reliability of the active sludge treatment plant was 70% for BOD5, 87% for COD and 66% for total suspended solids. In the sewage treatment plant with a biological deposit, the reliability values determined were: 30% (BOD5), 60% (COD) and 67% (total suspended solids). In a treatment plant with a hybrid reactor, 30% of the BOD5and COD limit values were exceeded, while 30% of the total suspended solids were exceeded. The reliability levels are significantly lower than the acceptable levels proposed in the literature, which means that the wastewater discharged from the analysed wastewater treatment plants often exceeds the limit values of indicators specified in currently valid in Poland Regulation of the Minister of Environment for object to 2000 population equivalent.


2011 ◽  
Vol 22 (6) ◽  
pp. 1150-1155 ◽  
Author(s):  
Nathália C. Viecelli ◽  
Eduardo R. Lovatel ◽  
Eduardo M. Cardoso ◽  
Irajá Nascimento Filho

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4408
Author(s):  
Galina Yotova ◽  
Tony Venelinov ◽  
Stefan Tsakovski

Surface water quality strongly depends on anthropogenic activity. Among the main anthropogenic sources of this activity are the wastewater treatment plant (WWTP) effluents. The discharged loads of nutrients and suspended solids could provoke serious problems for receiving water bodies and significantly alter the surface water quality. This study presents inventory analysis and chemometric assessment of WWTP effluents based on the mandatory monitoring data. The comparison between the Bulgarian WWTPs and previously reported data from other countries reveals that discharged loads from investigated WWTPs are lower. This is particularly valid for total suspended solids (TSS). The low TSS loads are the reason for the deviations of the typical calculated WWTP effluent ratios of Bulgarian WWTPs compared to the WWTPs worldwide. The performed multivariate analysis reveals the hidden factors that determine the content of WWTP effluents. The source apportioning based on multivariate curve resolution analysis provides detailed information for source contribution profiles of the investigated WWTP effluent loads and elucidate the difference between WWTPs included in this study.


Sign in / Sign up

Export Citation Format

Share Document