Landfill leachate treatment by a photoassisted fenton reaction

1997 ◽  
Vol 35 (4) ◽  
pp. 239-248 ◽  
Author(s):  
Soo-M. Kim ◽  
Sven-U. Geissen ◽  
Alfons Vogelpohl

A combination of the classical Fenton reaction (Fe(II)+H2O2) with UV light, the photoassisted Fenton reaction, has been investigated for the treatment of landfill leachate. The investigation has been carried out with an experimental set-up to establish the optimal treatment conditions. The degradation rate of organic pollutants is strongly promoted by the photoassisted Fenton reaction. The degradation rate depends on the amount of H2O2 and Fe(II) added, pH value, and radiation intensity. At a specific energy input of 80 kW m−3 the oxidation rate was increased to six times the rate without radiation (0 kW m−3). At the higher radiation intensity of 160 kW m−3 the degradation rate was about two times faster than at that of 80 kW m−3. Due to the regeneration of the consumed Fe(II) ions through the irradiation, the amount of ferrous salt to be added can be remarkably reduced. The optimum conditions were obtained with 1.0 × 10−3 mol 1−1 Fe(II) added, a pH value of 3, and a molar ratio of COD: H2O2 = 1:1. At a COD volume loading of less than 0.6 kg m−3 h−1, a COD degradation of more than 70% could be obtained with an energy input of 80 kW m−3.

Teknik ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 78 ◽  
Author(s):  
Arya Rezagama ◽  
Mochtar Hadiwidodo ◽  
Purwono Purwono ◽  
Nurul Fajri Ramadhani ◽  
Mia Yustika

Air lindi yang meresap ke dalam tanah yang berpotensi bercampur dengan air tanah sehingga menimbulkan pencemaran tanah, air tanah dan air permukaan. Komposisi limbah lindi dari berbagai TPA berbeda-beda bergantung pada musim, jenis limbah, umur TPA. Proses dalam TPA menghasilkan molekul organik recalcitrant yang ditunjukkan dengan rendahnya rasio BOD/COD dan tingginya nilai NH3-N. Belum optimalnya pengolahan air lindi di Jatibarang membutuhkan pretreatment sebagai bentuk upaya alternatif dalam proses pengolahan air lindi sebelum masuk ke dalam proses aerated lagun. Penelitian ini bertujuan untuk menganalisa pengaruh koagulan kimia pada penyisihan bahan organik air lindi TPA Jatibarang. Penelitian dilakukan pada bulan April- Agustus 2016. Karaktersitik air lindi TPA Jatibarang termasuk dalam kategori "moderately stable" dan lindi muda. Penyisihan bahan organik dengan menggunakan kuagulan kimia FeCl3 dan Al2SO4 menunjukkan nilai yang cukup signifikan untuk parameter COD, BOD, TSS. Penggunaan dosis optimal terjadi pada 16 g/L FeCl3 serta 16 g/L Al2SO4 dapat menurunkan nilai COD sebesar 51% dan 65%, BOD sebesar 50% dan 56%, dan TSS sebesar 24% dan 21%. Perubahan nilai pH akibat penambahan koagulan berpengaruh positif terhadap tingkat penyisihan, namun memberikan dampak negatif yaitu buih yang cukup banyak. Penurunan beban organik menguntungkan bagi sistem pengolahan lindi eksisting TPA Jatibarang. [Title: Removal of Lindi Water Organic Waste of TPA Jatibarang using Chemical Coagulation- Floculation] Leachate grounding into the soil that potentially could mix with the groundwater caused contamination of soil, groundwater and surface water. The composition of waste landfill leachate from the various location is depending on the season, the type of waste, and landfill age. Process in the TPA produces recalcitrant organic molecules as indicated by the low ratio of BOD/COD and NH3-N high value. The ineffective treatment of leachate at Jatibarang require a pretreatment as a form of alternative effort in the processing of leachate prior to entry into the aerated lagoon process. This study aims to analyze the influence of chemical coagulants on grounding organic material Jatibarang landfill leachate. The study was conducted in April-August 2016. Jatibarang landfill leachate characteristics were categorized as "moderately stable" and young leachate. Allowance for organic materials using chemical coagulants of FeCl3 and Al2SO4 showed significant values for the parameters of COD, BOD, and TSS. The use of optimal dose occurs at 16 g/L FeCl3 and 16 g/L Al2SO4 which can reduce the COD value by 51% and 65%, BOD by 50% and 56%, and TSS at 24% and 21%. PH value changes due to the addition of coagulant positive effect on the level of the allowance, but a negative effect that is quite a lot of froth. The decline in organic load favorable for existing landfill leachate treatment systems Jatibarang. 


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2018 ◽  
Vol 34 ◽  
pp. 02034 ◽  
Author(s):  
Pradeep Kumar Singa ◽  
Mohamed Hasnain Isa ◽  
Yeek-Chia Ho ◽  
Jun-Wei Lim

The efficiency of Fenton’s oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton’s process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.


2014 ◽  
Vol 1010-1012 ◽  
pp. 84-87
Author(s):  
Bin Yao ◽  
Zun Mian Xu ◽  
Cheng An Tao ◽  
Jian Fang Wang

The effects of pH adjustment method, pH value, UV light, catalase and Fenton reagent on the degradation efficiency of enzyme-Fenton reagent for methyl orange (MO) were investigated, and the synergetic catalytic effects of catalase and Fenton reagent on the catalytic oxidation for methyl orange were found. When under no UV-light, the enzyme can enhance the degradation efficiency of Fenton reagent. The optimum conditions for degrading methyl orange simulated wastewater whose concentration is 0.1 g/L at room temperature are obtained as follows: the pH is tuned with H2SO4, pH is 3.0, concentration of catalase is 5 μg / mL, concentration of H2O2is 0.01%, concentration of FeSO4is 1.8μmol / L. The degradation rate can reach 98% in 60min. When under UV light at the same condition, the degradation rate can reach 94% in only 15min.


2021 ◽  
Vol 47 (3) ◽  
pp. 409-416
Author(s):  
Larissa Granjeiro Lucena ◽  
Nathália Aquino de Carvalho ◽  
Inalmar Dantas Barbosa Segundo ◽  
Maria Marcella Medeiros Melo ◽  
Arthur Marinho Cahino ◽  
...  

The high polluting potential and variable content of the landfill leachate makes it a significant source of environmental contamination. Advanced oxidation processes (AOPs) such as Fenton process, arises as leachate treatment. Application of response surface methodology (RSM) from previous literatures evaluates the synergistic effects of independent variables to optimize the Fenton process. This paper presents systematic review on articles published from 2005 to 2015 reported on optimum conditions of Fenton treatment landfill leachate treatment using RSM. Papers were selected from different database according to defined inclusion criteria and then, evaluated. The best conditions identified were: pH around 3, [H2O2]/[Fe2+] molar ratio from 2.38 to 24.00, [H2O2]/[CODraw leachate] mass ratio around 1 and reaction time from 30 min to 331.2 min. All models presented R2 > 0.75, indicating a good correlation between the experimental data and the values predicted by the models.


2015 ◽  
Vol 773-774 ◽  
pp. 1163-1167 ◽  
Author(s):  
Siti Fatihah Ramli ◽  
Hamidi Abdul Aziz

Coagulation and flocculation are two of the most common chemical treatment methods used in leachate treatment. Existing coagulants are mainly based on Al and Fe salts. The use of non-chemical based coagulants, especially natural polymers, in leachate treatment has not been thoroughly investigated. Natural coagulants have less harmful effects to human health compared with metal salts. This study aimed to investigate the effectiveness of ferric chloride (FeCl3) and chitosan as coagulant in removing the turbidity and color from landfill leachate. Leachate was collected from the Matang Landfill site located at Taiping, Perak, Malaysia. When used as the main coagulant in this study, FeCl3was able to remove 97.78% of the turbidity and 95.54% of the color of the leachate at an optimum dosage of 3600 mg/L. At a dosage of 60 mg/L, chitosan only removed 23.52% of the turbidity and 14.67% of the color at pH levels of 9 and 4, respectively. The optimum pH value for FeCl3was 6. Therefore, FeCl3 is an effective coagulant that can help to remove the colour and turbidity compared to chitosan.


2004 ◽  
Vol 49 (10) ◽  
pp. 123-129 ◽  
Author(s):  
O. Kopplow ◽  
M. Barjenbruch ◽  
V. Heinz

The anaerobic stabilization process depends - among other things - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogeniser, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55¡C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds.


1998 ◽  
Vol 38 (2) ◽  
pp. 209-214 ◽  
Author(s):  
J. Yoon ◽  
S. Cho ◽  
Y. Cho ◽  
S. Kim

The need to improve the Fenton process, which is one of the leachate treatment trains at Metropolitan Landfill in Korea was raised. This study was intended to compare the Fenton reaction with coagulation in removing landfill leachate organics of specific size. The organics fractionated by ultrafiltration and measured by TOC, were selected for evaluating the characteristics of the removal of organics. From this study it was found that the organic removal pattern in the Fenton reaction was quite similar to coagulation. Both reactions removed large leachate organics more readily and selectively. For example, coagulation removed 59~73% of organics larger than molecular weight (MW) of 500 and only up to 18% of organics less than MW of 500. On the other hand, the Fenton process removed 72-89% of organics larger than MW of 500 and only up to 43% of organics less than MW of 500. It was interpreted that the coagulation step in the Fenton process had a primary role in selective removal of leachate organics, though the Fenton reaction is not coagulation. However, since the efficiency of organic removal in the Fenton reaction was higher than coagulation, the Fenton process in Metropolitan Landfill leachate treatment process may be called “a type of enhanced coagulation”.


2017 ◽  
Vol 46 ◽  
pp. 123-134 ◽  
Author(s):  
Guo Qiang Tan ◽  
Chi Xu ◽  
Hui Jun Ren ◽  
Wei Yang ◽  
Cheng Cheng Zhao ◽  
...  

The bamboo-like FeVO4 nanocrystallines were synthesized by a two-step method of the microwave hydrothermal-calcination, using Fe (NO3)3·9H2O and NH4VO3 as raw materials. The physical and photophysical properties of the as-prepared photocatalysts were fully characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV-vis diffuse reflectance spectra and photoluminescence (PL) analysis. The photocatalytic activities were evaluated by the decolorization of RhB solution under UV and visible light irradiation. The results reveal that the precursor solution concentration is 0.15 mol/L, the molar ratio n (Fe)/n (V) is 1, pH=3.0. The microwave hydrothermal reaction is at 180 °C for 120 min and then calcinated under 550 °C for 3 h so as to obtain the triclinic FeVO4 nanocrystalline. Along [120] and [110], the fore and aft phases of the crystal orientation are bonded self-assembly to grow into the bamboo-like nanocrystalline with the energy gap of 2.42 eV. Under the UV-light irradiation for 240 min, the degradation rate of RhB is up to 91.2%. Adding 0.1 mL H2O2 to the solution, the out-phase photo-fenton reaction occurs and the degradation rate to RhB can reach to 98.8% after 8 h visible-light irradiation.


Sign in / Sign up

Export Citation Format

Share Document