Impact of industrial discharge on the performance of a biological POTW - model development

1997 ◽  
Vol 36 (2-3) ◽  
pp. 35-43
Author(s):  
Y. Argaman ◽  
W. W. Eckenfelder ◽  
A. J. O'Reilly

This paper describes the development of a mathematical model and its application for predicting the dimensions of an industrial wastewater pretreatment system, and its comparison with alternative solutions. The model is based on pseudo first order kinetics for both the municipal and the industrial wastewater, and also on the Monod kinetics for the industrial wastewater. In the combined treatment process the biomass is taken as a mixture of specialist microorganisms capable of degrading target compounds. The kinetic rate of the combined stream is taken as the weighted average of the reciprocal K values. The model was used to compare the alternative treatment schemes and the main conclusions were: (1) pretreatment of industrial wastewater is always the most efficient alternative, and (2) an optimal VSS concentration exists in the pretreated effluent, leading to the most efficient treatment system. Experimental studies aimed at validation of this model are strongly recommended.

2019 ◽  
Vol 19 (4) ◽  
pp. 232-241 ◽  
Author(s):  
Xuegong Chen ◽  
Wanwan Shi ◽  
Lei Deng

Background: Accumulating experimental studies have indicated that disease comorbidity causes additional pain to patients and leads to the failure of standard treatments compared to patients who have a single disease. Therefore, accurate prediction of potential comorbidity is essential to design more efficient treatment strategies. However, only a few disease comorbidities have been discovered in the clinic. Objective: In this work, we propose PCHS, an effective computational method for predicting disease comorbidity. Materials and Methods: We utilized the HeteSim measure to calculate the relatedness score for different disease pairs in the global heterogeneous network, which integrates six networks based on biological information, including disease-disease associations, drug-drug interactions, protein-protein interactions and associations among them. We built the prediction model using the Support Vector Machine (SVM) based on the HeteSim scores. Results and Conclusion: The results showed that PCHS performed significantly better than previous state-of-the-art approaches and achieved an AUC score of 0.90 in 10-fold cross-validation. Furthermore, some of our predictions have been verified in literatures, indicating the effectiveness of our method.


2021 ◽  
Vol 149 ◽  
Author(s):  
Jincheng Wei ◽  
Shurui Guo ◽  
Enshen Long ◽  
Li Zhang ◽  
Bizhen Shu ◽  
...  

Abstract The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is highly contagious, and the coronavirus disease 2019 (COVID-19) pandemic caused by it has forced many countries to adopt ‘lockdown’ measures to prevent the spread of the epidemic through social isolation of citizens. Some countries proposed universal mask wearing as a protection measure of public health to strengthen national prevention efforts and to limit the wider spread of the epidemic. In order to reveal the epidemic prevention efficacy of masks, this paper systematically evaluates the experimental studies of various masks and filter materials, summarises the general characteristics of the filtration efficiency of isolation masks with particle size, and reveals the actual efficacy of masks by combining the volume distribution characteristics of human exhaled droplets with different particle sizes and the SARS-CoV-2 virus load of nasopharynx and throat swabs from patients. The existing measured data show that the filtration efficiency of all kinds of masks for large particles and extra-large droplets is close to 100%. From the perspective of filtering the total number of pathogens discharged in the environment and protecting vulnerable individuals from breathing live viruses, the mask has a higher protective effect. If considering the weighted average filtration efficiency with different particle sizes, the filtration efficiencies of the N95 mask and the ordinary mask are 99.4% and 98.5%, respectively. The mask can avoid releasing active viruses to the environment from the source of infection, thus maximising the protection of vulnerable individuals by reducing the probability of inhaling a virus. Therefore, if the whole society strictly implements the policy of publicly wearing masks, the risk of large-scale spread of the epidemic can be greatly reduced. Compared with the overall cost of social isolation, limited personal freedoms and forced suspension of economic activities, the inconvenience for citizens caused by wearing masks is perfectly acceptable.


2020 ◽  
Vol 9 (4) ◽  
pp. 106-110
Author(s):  
Tue Nguyen Ngoc ◽  
Nghia Nguyen Trong ◽  
Thuong Nghiem Thi ◽  
Quang Tran Thuong ◽  
Trung Nguyen Duc

In this article, the results of the research on organic pollutant treatment in the wastewater of printing processes on fabric by H2O2 under the catalytic role of the complex between ion Ni2+ and Citric acid (H4L) were presented. The condition of pH, H4L/Ni2+, H2O2, Ni2+ concentration has been explored to get the optimal conditions for improving COD efficient treatment. The results provide the solutions of the homogeneous complex  catalysts in the industrial wastewater treatment at room temperature and atmosphere. 


2019 ◽  
Vol 68 (8) ◽  
pp. 666-674 ◽  
Author(s):  
Shiljashree Vijay ◽  
Raj Mohan Balakrishnan ◽  
Eldon R. Rene ◽  
Uddandarao Priyanka

Abstract Nanotechnologies have prominent applications in the field of science and technology owing to their size-tunable properties providing a promising approach for degradation of various pollutants. In this scenario, the present work aims to study the effect of nickel ferrite nanoparticles on the degradation of Irgalite violet dye by Fenton's reaction using oxalic acid as an oxidizing agent in the presence of sunlight. The effect of pH and adsorbent dosage on the rate of dye degradation was monitored. Based on these studies it was observed that 99% dye degradation was achieved for catalyst dosage of 0.2 g, 400 ppm dye concentration and 2.0 mM oxalic acid at pH 3.0 within 60 min. The studies reveal that the degradation follows pseudo-first-order kinetics and the catalyst reusability remained constant almost for five cycles. Further, nickel ferrite nanoparticles are proven to be an efficient alternative for the removal of dyes from coloured solutions.


2012 ◽  
Vol 36 (6) ◽  
pp. 717-737 ◽  
Author(s):  
David A. Johnson ◽  
Ahmed Abdelrahman ◽  
Drew Gertz

The performance of a three bladed 3.3 m diameter turbine was measured unobtrusively in a large scale, controlled wind, open jet facility. Due to the scale of the facility blockage was very low in comparison to previous studies. The turbine blades utilized NREL S83X airfoils appropriate for the flow conditions and Reynolds number present in the facility. Airfoils were blended along the radial direction in a varying chord, varying twist blade design with a design coefficient of power ( Cp) peak at λ = 5.4. Simultaneous three component velocity measurements were obtained using a purpose built traverse at specific radial locations (segments) upstream and immediately downstream of the rotor plane. These velocities were utilized to determine blade element momentum (BEM) parameters and to predict the performance of the rotor. Comparisons are made to the limited number of experimental studies reported in the literature and with parameters derived from CFD numerical simulations. Measured radial velocities upstream of the rotor were near zero and uniform in the radial direction and were uniform and slightly larger downstream of the rotor indicating the BEM assumption of limited radial interaction between segments was acceptable and that the wake was expanding. Axial induction was most uniform in the radial direction at the design and peak Cp condition and area averaged values approached 1/3 but did not exceed this value. Tangential measured velocities, tangential induction and circulation show the impact of the nacelle and blade root location and the tip. An evaluation of the local angle of attack and two dimensional airfoil data at one radial location gave a reasonable comparison with other measured torque values. Rotor performance determined with this method was compared with electrical power measurements and previous BEM model predictions. The power derived from the BEM method outlined here closely followed electrical turbine power measurements although the method overpredicted the power likely due to the segment discretization in the tip region. The detail of these results should be useful to further understand the flow immediately downstream of a rotor in controlled conditions and provide detailed data for BEM model enhancement and future model development.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3802-3808 ◽  
Author(s):  
Philippe V. Afonso ◽  
Mourad Mekaouche ◽  
Franck Mortreux ◽  
Frédéric Toulza ◽  
Antoine Moriceau ◽  
...  

Abstract Approximately 3% of all human T-lymphotropic virus type 1 (HTLV-1)–infected persons will develop a disabling inflammatory disease of the central nervous system known as HTLV-1–associated myelopathy/tropical spastic paraparesis, against which there is currently no efficient treatment. As correlation exists between the proviral load (PVL) and the clinical status of the carrier, it is thought that diminishing the PVL could prevent later occurrence of the disease. We have conducted a study combining valproate, an inhibitor of histone deacetylases, and azidothymidine, an inhibitor of reverse transcriptase, in a series of baboons naturally infected with simian T-lymphotropic virus type 1 (STLV-1), whose PVL was equivalent to that of HTLV-1 asymptomatic carriers. We show that the combination of drugs caused a strong decrease in the PVL and prevented the transient rise in PVL that is seen after treatment with histone deacetylases alone. We then demonstrate that the PVL decline was associated with an increase in the STLV-1–specific cytotoxic T-cell population. We conclude that combined treatment with valproate to induce viral expression and azidothymidine to prevent viral propagation is a safe and effective means to decrease PVL in vivo. Such treatments may be useful to reduce the risk of HAM/TSP in asymptomatic carriers with a high PVL.


2013 ◽  
Vol 864-867 ◽  
pp. 96-100
Author(s):  
Shen Xin Li ◽  
Wei Hu ◽  
Ying Wang ◽  
Jian Zhang Li ◽  
Cheng Duan Wang

The phenol oxidation with persulfate catalyzed were studied. Effects of several parameters, such as dose of oxidant, pH, temperature and UV irradiation, were investigated in detail. The results showed that the phenol oxidation by persulfate could be fitted to a pseudo-first order kinetics model. The optimum acidity of the phenol oxidation system in the paper is ca. pH 8.76, the optimum temperature which is ca.70 °C and the optimum molar ratio of persulfate to the phenol is ca.40 in the solution.The results are useful for the treatment of industrial wastewater. Key words: Phenol oxidation Schiff base manganese (III) complexes Persulfate


Author(s):  
V. I. Evdokimov ◽  
A. S. Kourov

Relevance.According to the Federal Statistics Service (Rosstat), (315.8 ± 8.5) thousand thermal and chemical burns or (220.6 ± 6.5) burns per 100 thousand people of the country’s population were recorded annually in Russia in 2005–2015. These injuries account for 2.4 % of the structure of all injuries in Russia.Intention.Analysis of the content of scientific journal articles of domestic authors on burn injuriesMethodology.We conducted a search in the electronic database of the Scientific Electronic Library, which made it possible to identify in 2005–2017 1649 scientific journal articles of domestic authors. The average annual number of articles on burn injury indexed in the Russian Science Citation Index was (127 ± 13). There is an increase in the interest of researchers to the problems of burns. The content of the articles correlated with the developed classifier for burn injury.Results and Discussion.General questions of burn injuries were described in 1.6 %, problems of organization of medical care for burn victims – in 4.9 %, characteristics of burn injuries – in 42.9 %, information on diagnostics, treatment, probable complications and rehabilitation of victims – in 41.3 %, experimental studies of burn injury in animals – in 9.3 % of publications. The presented indicators reflected the content of the articles, and, to some extent, objective data. For example, superficial and limited burns were studied to a lesser extent, although they actually prevail. As a rule, the object of research was complex cases that could be of increased interest among readers. The weighted average impact factor of the journals in which the articles were published was 0.304, the average number of citations per article was 1.42, 42.6 % of the articles were cited at least once, Hirsch index was 15. Some authors used inadequate study design. When preparing publications, the groups of authors were often redundant, which resulted in a significant decrease in the number of articles and citations per 1 coauthor.Conclusion. The study helps optimize research in the field of burn injuries. Among the created array of articles, 74.2 % of publications had a full text, 69.4 % of articles were provided free of charge to registered readers of the Scientific Electronic Library.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Ji Hwan Lee ◽  
Do Hwi Park ◽  
Sanghyun Lee ◽  
Hye Jin Seo ◽  
Shin Jung Park ◽  
...  

AbstractThe prevalence of gastritis in South Korea is rapidly increasing owing to the prevalence of Helicobacter pylori infection and fast eating habit. The usual treatment for acute gastritis following a long intake of non-steroidal anti-inflammatory drugs (NSAIDs) or alcohol is to stop the causal factors. Metronidazole and lansoprazole are recommended for the treatment of H. pylori infection gastritis. Omeprazole a proton pump inhibitor, is used to decrease gastric acid production. However, owing to the side effects and refractoriness of the drug, a safe and efficient treatment is required. Plant-derived phytochemicals have emerged as novel agents against chronic disorders. In this study, firstly, to explore the potential of pharmacological activities, including efficacy and mechanisms of Cinnamomum cassia against gastritis, a literature review was performed based on 20 studies out of a total of 749 records obtained using a search strategy. From the literature review, the therapeutic targets of C. cassia extract and cinnamaldehyde, a compound of C. cassia, were found to be related with NFκB activity, and their signaling pathway were verified by experiments. C. cassia extract plays a role in protection of gastric ulcers induced in four ways (immersion stress-induced, ethanol-induced, hydrochloric acid-induced, or NSAIDs-induced ulcer). None of the clinical studies on C. cassia extracts or compounds met our criteria. When the standardized extract of C. cassia (ECC) was orally administered repeatedly to Beagle Dog for 4 weeks, no toxicologically harmful changes were observed. Therefore, under the test condition, the no observed adverse effect level (NOAEL) of ECC was judged to be 1000 mg/kg/day for both sexes, and no toxic target organ was observed. Administration of ECC in the Sprague–Dawley rat model of acute gastric injury caused by indomethacin administration significantly increased gastric mucus volume. Administration of ECC in the acute gastric injury model caused by indomethacin administration is considered effective in improving gastric injury. However, research and efforts to develop a reliable ‘standardization of natural drugs’ by establishing the best quality evaluation system are limited. Despite the pharmacological potential of ECC, further well-designed experimental studies such as in vitro, in vivo, and clinical trials are required to validate these findings and the underlying mechanisms of ECC.


2021 ◽  
Vol 9 ◽  
Author(s):  
Charnay Cunningham ◽  
Maryna de Kock ◽  
Monique Engelbrecht ◽  
Xanthene Miles ◽  
Jacobus Slabbert ◽  
...  

The number of proton therapy facilities and the clinical usage of high energy proton beams for cancer treatment has substantially increased over the last decade. This is mainly due to the superior dose distribution of proton beams resulting in a reduction of side effects and a lower integral dose compared to conventional X-ray radiotherapy. More recently, the usage of metallic nanoparticles as radiosensitizers to enhance radiotherapy is receiving growing attention. While this strategy was originally intended for X-ray radiotherapy, there is currently a small number of experimental studies indicating promising results for proton therapy. However, most of these studies used low proton energies, which are less applicable to clinical practice; and very small gold nanoparticles (AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed to a concentration of 10 μg/ml of 50 nm AuNPs for 4 hours before irradiation with a clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by inductively coupled mass spectrometry and transmission electron microscopy, showing a random distribution of AuNPs throughout the cytoplasm of the cells and even some close localization to the nuclear membrane. The combined exposure to AuNPs and protons resulted in an increase in cell killing, which was 27.1% at 2 Gy and 43.8% at 6 Gy, compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs. Additionally, cells were irradiated at different positions along the proton depth-dose curve to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic damage was observed at all depths for the combined treatment compared to protons alone, but no incremental increase with LET could be determined. In conclusion, this study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of proton therapy.


Sign in / Sign up

Export Citation Format

Share Document