Organic and nitrogen removal with minimal COD requirement by integration of sequestered denitrification and separate nitrification in a low-loaded activated sludge process

2000 ◽  
Vol 42 (12) ◽  
pp. 65-72 ◽  
Author(s):  
H.-S. Shin ◽  
S.-Y. Nam

A separate sludge system incorporating sequencing batch reactor (SBR) for sequestered denitrification and an immobilized fixed-film reactor for nitrification was investigated in this study. Emphases were placed on the preservation of organic matter as an electron donor for denitrification and the improvement of nitrification efficiency by using an immobilization technique with alginate coating. To preserve organic materials in the sludge required for denitrification, a study was made with a contact process. The contactor, when operated with a short detention time, gave incomplete metabolism of organic matter. With 64% of the influent soluble chemical oxygen demand (SCOD) was adsorbed to activated sludge within 30 min. The specific mass of organic matter uptaken was 55 mg SCOD/g mixed liquor suspended solids (MLSS), which enhanced the denitrification efficiency up to 63% in the following denitrification step. Thus, the required COD in the proposed system can be saved up to 63% as an available electron donor for the conventional aerobic process. The immobilized nitrification unit showed over 90% of nitrate production rate up to 50 mg/l of influent ammonia load.

2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Mohd Hafizuddin Muhamad ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassimi Abu Hasan

In this study, an attached-growth bioreactor was operated using granular activated carbon (GAC) with additional biomass; and evaluatedits performance in the treatment of real recycled paper mill effluent at chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 hours and COD:N:P ratio of about 100:5:1. A laboratory-scale aerobic sequencing batch reactor (SBR) was used. The efficiency of this biological treatment processwas studiedover a 300-day period, in order to evaluate their performance, especially for the removal of nitrogen compound and of biodegradable organic matter. It has been found that this process was able to remove organic matter (expressed as COD; 91-99%) and turbidity (89-99%) almost completely and simultaneously; the removal of nitrogen (expressed as NH3-N; 70-94%), phosphorus (expressed as PO43-P; 42-71%), suspended solid (81-99%) and colour (72-91%) were sufficiently achieved. The overall performance confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of the performance efficiency and process stability under fluctuations of organic load.


Author(s):  
Ogbebor Daniel ◽  
Ndekwu, Benneth Onyedikachukwu

Aim: The study aimed at designing a wastewater treatment method for removal of (Biological Oxygen Demand) BOD5 using Sequencing batch reactor (SBR). Study Design: SBR functions as a fill-and-draw type of activated sludge system involving a single complete-mix reactor where all steps of an activated sludge process take place. Methodology: The intermittent nature of slaughterhouse wastewaters favours batch treatment methods like sequence batch reactor (SBR). Attempts to remediate the impact of this BOD5 on the stream, led to the design of a sequence batch reactor which was designed to treat slaughterhouse effluent of 1000 L. Results: The oxygen requirement for effective removal of BOD5 to 95% was determined to be 21.10513 kgO2/d, while L:B  of 3:1 was considered for the reactor. Also, air mixing pressure for the design was 0.16835 bar, while settling velocity was . Conclusion: To ensure proper treatment of BOD5 load of the slaughterhouse, a sequencing Batch reactor of 1000 litre carrying capacity was designed. For effective operation of this design, the pressure exerted by the mixing air was 0.16835 bar which was far greater than the pressure exerted by the reactor content and the nozzle. Settling velocity of 0.0003445 m/s for 0.887 hrs was required for the reactor to be stable and a theoretical air requirement of 1.6884 m³/d was calculated. Hence the power dissipated by the rising air bubbles to ensure efficient mixing of oxygen in the reactor was calculated as 26530003.91 Kilowatts. With these design parameters, the high BOD5 load downstream of the river can be treated to fall below the FMEnv recommended limit of 50 mg/l.


2007 ◽  
Vol 55 (10) ◽  
pp. 201-208 ◽  
Author(s):  
J.C. Frigon ◽  
T. Bruneau ◽  
R. Moletta ◽  
S.R. Guiot

A proof of concept was performed in order to verify if the coupling of anaerobic and aerobic conditions inside the same digester could efficiently treat a reconstituted whey wastewater at 21 °C. The sequencing batch reactor (SBR) cycles combined initial anaerobic phase and final aerobic phase with reduced aeration. A series of 24 h cycles in 0.5 L digesters, with four different levels of oxygenation (none, 54, 108 and 182 mgO2 per gram of chemical oxygen demand (COD)), showed residual soluble chemical oxygen demand (sCOD) of 683±46, 720±33, 581±45, 1,239±15 mg L−1, respectively. Acetate and hydrogen specific activities were maintained for the anaerobic digester, but decreased by 10–25% for the acetate and by 20–50% for the hydrogen, in the coupled digesters. The experiment was repeated using 48 h cycles with limited aeration during 6 or 16 hours at 54 and 108 mgO2gCOD−1initial, displaying residual sCOD of 177±43, 137±38, 104±22 and 112±9 mg L−1 for the anaerobic and the coupled digesters, respectively. The coupled digesters recovered after a pH shock with residual sCOD as low as 132 mg L−1 compared to 636 mg L−1 for the anaerobic digester. With regard to the obtained results, the feasibility of the anaerobic- aerobic coupling in SBR digesters for the treatment of whey wastewater was demonstrated.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1539 ◽  
Author(s):  
Justyna Michalska ◽  
Izabela Greń ◽  
Joanna Żur ◽  
Daniel Wasilkowski ◽  
Agnieszka Mrozik

Hauling landfill leachate to offsite urban wastewater treatment plants is a way to achieve pollutant removal. However, the implementation of biological methods for the treatment of landfill leachate can be extremely challenging. This study aims to investigate the effect of blending wastewater with 3.5% and 5.5% of the industrial leachate from the Kalina pond (KPL) on the performance of sequencing batch reactor (SBR) and capacity of activated sludge microorganisms. The results showed that the removal efficiency of the chemical oxygen demand declined in the contaminated SBR from 100% to 69% and, subsequently, to 41% after the cotreatment with 3.5% and 5.5% of the pollutant. In parallel, the activities of the dehydrogenases and nonspecific esterases declined by 58% and 39%, and 79% and 81% after 32 days of the exposure of the SBR to 3.5% and 5.5% of the leachate, respectively. Furthermore, the presence of the KPL in the sewage affected the sludge microorganisms through a reduction in their functional capacity as well as a decrease in the percentages of the marker fatty acids for different microbial groups. A multifactorial analysis of the parameters relevant for the wastewater treatment process confirmed unambiguously the negative impact of the leachate on the operation, activity, and structure of the activated sludge.


2007 ◽  
Vol 73 (7) ◽  
pp. 2257-2270 ◽  
Author(s):  
Johwan Ahn ◽  
Sarah Schroeder ◽  
Michael Beer ◽  
Simon McIlroy ◽  
Ronald C. Bayly ◽  
...  

ABSTRACT All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter−1 to less than 0.1 mg P liter−1 (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-β-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that “Candidatus Accumulibacter phosphatis” bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated acetate and contained intracellular PHA during the feed stages, they never accumulated poly(P) during the cycles, consistent with the phenotype of glycogen-accumulating organisms.


2012 ◽  
Vol 7 (3) ◽  
Author(s):  
E. M. Matsumoto ◽  
M. S. Osako ◽  
S. C. Pinho ◽  
G. Tommaso ◽  
T. M. Gomes ◽  
...  

Studies on the environmental impacts of the food industry are important because the wastewater produced by these industries contains large amounts of organic matter and nutrients. Nitrogenous compounds released into the environment stimulate the greenhouse effect and threaten biodiversity. Sequencing batch reactors (SBR) have received a considerable amount of attention in recent years and have been used in the treatment of dairy wastewater in bench scale studies. Dairy plants are operated in batch regime and offer a good opportunity for wastewater treatment via sequential batch processes. Accordingly, the present article describes the results obtained in the first 100 days of operation of a system composed of an anaerobic sequencing batch (ASBR) followed by an aerobic reactor operated under SBR mode, for the treatment of wastewater generated by the USP Pirassununga dairy plant. SBR was used as post-treatment of ASBR to remove residual organic matter and to promote the nitrification of the effluent of the ASBR. Within a 24-h cycle, the ASBR removed 91.1 ± 5.0% of organic matter (chemical oxygen demand (COD) total). The initial concentration of total COD was approximately 4.5 g/L, and the organic loading rate was equal to 4.5 kg/m³ day. The SBR was operated for 24 h at a dissolved oxygen concentration of 3 mg/L, and NH4+-N was effectively converted to NO3−-N. At the end of the cycle, the concentration of NO3−-N and NO2−-N was equal to 26.0 ± 20.7 mg/L and 4.9 ± 2.97 mg/L, respectively. The SBR removed 75.5 ± 22.4% of the total total Kjeldahl nitrogen (TKN-N) of which 50% was converted to nitrate and 9% was converted to nitrite. It is believed that 41% of TKN-N removed may have been assimilated by microorganisms or converted to gaseous nitrogen by the denitrification during the stage of sedimentation. Moreover, phosphorus was also efficiently removed from the effluent, and the concentration of total phosphorous at the end of the cycle was equal to 4.9 ± 0.8 mg/L. Regarding the employment of the effluents from reactors for agricultural reuse, it was not observed sodification risk of soil; however the high values of electrical conductivity indicated a high potential for soil salinization.


2012 ◽  
Vol 7 (2) ◽  
pp. 250-258 ◽  
Author(s):  
Mirosław Szyłak-Szydłowski ◽  
Teresa Korniłłowicz-Kowalska

AbstractThe paper discusses the dynamics of the accumulation of microscopic fungi, depending on the sludge load (Bx), in activated sludge used for landfill leachate pretreatment. The propagule washout from the sludge into pretreated leachates is determined, including genera and species that may threaten environmental health. An increased accumulation of microscopic fungi in sludge flocs occurred at Bx=0.23−0.45 mg chemical oxygen demand (COD) mg−1 d−1. Microscopic fungi were eluted at the maximal Bx value tested of 1.64 mg COD mg−1 d−1. Both the activated sludge and the leachate runoff from the sequencing batch reactor (SBR) pose health risks to the environment due to the occurrence of fungi such as Aspergillus fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Geotrichum candidum and G. fragrans. Their count is sufficient to cause multi-organ infections in homeothermal animals and in humans.


2016 ◽  
Vol 73 (10) ◽  
pp. 2324-2331 ◽  
Author(s):  
Changyong Wu ◽  
Yuexi Zhou ◽  
Jiamei Song

A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330–350 mg L−1, was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L−1, 347.5 mg L−1, and 35.5 mg L−1, respectively. Then, XSTO and EPS decreased to 124.5 mg L−1 and 340.0 mg L−1, respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L−1 to 54.6 mg L−1 during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L−1, which then decreased to 245.6 mg L−1 at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I.


Sign in / Sign up

Export Citation Format

Share Document