Hydrogen fermentation of organic municipal wastes

2000 ◽  
Vol 42 (12) ◽  
pp. 155-162 ◽  
Author(s):  
T. Noike ◽  
O. Mizuno

Hydrogen gas is recognized as a promising energy resource in the future. Microbial hydrogen fermentation would be an attractive process for hydrogen recovery. In particular, hydrogen production using fermentative bacteria has some advantages such as a high rate of hydrogen production without light. In this study, the hydrogen production from organic wastes was investigated using batch experiments. Bean curd manufacturing waste, rice bran and wheat bran were used as the organic wastes. The effects of solid concentration on the hydrogen production potential and the characteristics of substrate decomposition were investigated. The percentages of hydrogen in the produced gas were between 54–78%, 43–68% and 42–72% for bean curd manufacturing waste, ricebran and wheat bran, respectively. The hydrogen production potentials of bean curd manufacturing waste, rice bran and wheat bran were 14–21, 31–61 and 10–43 ml.g VS−1, respectively. The hydrogen yields from carbohydrate degradation were 2.54, 1.29 and 1.73 mol of H2 mol−1 of hexose for bean curd manufacturing waste, rice bran and wheat bran, respectively. The carbohydrate was rapidly consumed just after inoculation. On the other hand, soluble protein was hardly degraded for each substrate, indicating that carbohydrate was the main source of the hydrogen production.

2011 ◽  
Vol 63 (3) ◽  
pp. 440-448 ◽  
Author(s):  
L. Wang ◽  
Y. Chen ◽  
Y. Ye ◽  
B. Lu ◽  
S. Zhu ◽  
...  

As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 345-350 ◽  
Author(s):  
O. Mizuno ◽  
T. Ohara ◽  
M. Shinya ◽  
T. Noike

The hydrogen production from bean curd manufacturing waste by anaerobic microflora was investigated using batch experiments at 35 °C. The anaerobic microflora was obtained from fermented soybean-meals and maintained using a sucrose-limited medium in continuous culture. A solution of an organic substrate without solid component such as rough fiber in bean curd manufacturing waste was used for the experiments. After the inoculation, hydrogen production immediately occurred and almost ceased at 12 h. The final concentration of hydrogen in gas produced was 63% H2. During hydrogen production, carbohydrate was rapidly degraded while protein degradation was hardly observed, suggesting that carbohydrate was the main source of the hydrogen production. The hydrogen yield was 2.54 mol of H2 mol-1 of hexose utilized if hydrogen gas was produced from only carbohydrate degradation. At a carbohydrate concentration greater than 3,720 mg l-1, the rate of hydrogen production rate significantly decreased. The rate of alcohol production was remarkably increased with increasing carbohydrate while the rate of volatile fatty acid production was hardly changed. The results indicated that the metabolic pathway and the amount of hydrogen production would be significantly influenced by the carbohydrate concentration.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2136
Author(s):  
Karl Sohlberg

Extraction of hydrogen from hydrocarbons is a logical intermediate-term solution for the escalating worldwide demand for hydrogen. This work explores the possibility of using a single membrane to accomplish both the catalytic dehydrogenation and physical separation of hydrogen gas as a possible way to improve the efficiency of hydrogen production from hydrocarbon sources. The present analysis shows that regions of pressure/temperature space exist for which the overall process is thermodynamically spontaneous (ΔG < 0). Each step in the process is based on known physics. The rate of hydrogen production is likely to be controlled by the barrier to hydrogen abstraction, with the density of H-binding sites also playing a role. A critical materials issue will be the strength of the oxide/metal interface.


2021 ◽  
Vol 50 (14) ◽  
pp. 4783-4788
Author(s):  
Jie Yang ◽  
Shuanglin He ◽  
Qianqian Wu ◽  
Ping Zhang ◽  
Lin Chen ◽  
...  

A bio-inspired manganese molecular catalyst featuring an intramolecular aniline as a proton relay was synthesized and used for hydrogen production. Electrochemical measurements with this complex show excellent activity (turnover frequency over 104 s−1).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 891
Author(s):  
Ken-ichi Fujita ◽  
Takayoshi Inoue ◽  
Toshiki Tanaka ◽  
Jaeyoung Jeong ◽  
Shohichi Furukawa ◽  
...  

A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


2006 ◽  
Vol 5 (4) ◽  
pp. 316-324 ◽  
Author(s):  
Tomoyuki MURAKAMI ◽  
Atsuhiko TERADA ◽  
Tetsuo NISHIHARA ◽  
Yoshiyuki INAGAKI ◽  
Kazuhiko KUNITOMI

2018 ◽  
Vol 66 (11) ◽  
pp. 2765-2774 ◽  
Author(s):  
Lin Lei ◽  
Jingnan Chen ◽  
Yuwei Liu ◽  
Lijun Wang ◽  
Guohua Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document