Anaerobic digestion of a nonionic surfactant: inhibition effect and biodegradation

2001 ◽  
Vol 44 (4) ◽  
pp. 175-181 ◽  
Author(s):  
A. Jiménez-González ◽  
M. Salazar-González ◽  
M. Gutiérrez-Rojas ◽  
O. Monroy

Nonionic surfactants are used worldwide in various industrial and household applications. Since these compounds are used in aqueous solutions, they primarily enter the environment through sewage and industrial wastewater treatment plants. The objective of this work was to evaluate the inhibitory effect of Triton X-100, a commercial nonionic surfactant, on the anaerobic digestion of lactose. Thus non-ionic surfactants acts as a non-competitive inhibitor with KI = 250 mgL−1 and a inhibition order of 2.4. Nonetheless if give enough time the sludge was able to degrade 79% of Triton at 0.1 gL−1 d−1 in a UASB reactor. An activity test of this sludge showed that Triton inhibited the acetogenic (both propionic and butyric) and acetoclastic activities, while there were high fermentative and hydrogenotrophic activities (80% and 95%, respectively).

2020 ◽  
Vol 65 (1) ◽  
pp. 72-79
Author(s):  
Olga Kochkodan ◽  
Victor Maksin ◽  
Tetyana Semenenko

Adsorption of anionic sodium hexadecyl sulfate (SHS) and nonionic Triton X surfactants with different ethoxylation degree: TX-45, TX-100 and TX-300 from their individual and mixed aqueous solutions at the surface of thermally graphitized carbon black (CB) was studied. It was found that at low solution concentrations addition of the nonionic surfactant increases the amount of SHS adsorbed from SHS/Triton X mixtures compared to SHS amount adsorbed from its individual solution. These findings might be explained by decreasing in electrostatic repulsion between SHS ions due to inclusion of the molecules of the nonionic surfactant in the mixed adsorption layer. At higher solution concentrations, adsorption of SHS decrease as a result of displacement of SHS ions from the mixed adsorption layer by Triton X molecules. It was established that the composition of the mixed adsorption layer at CB surface notably differ from the composition of the surfactant mixture in the bulk solution. The mixed adsorption layer is enriched with the molecules of the nonionic surfactants and this conclusion is confirmed by the results of measuring zeta potential of CB particles with the adsorbed surfactants.


2014 ◽  
Vol 70 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Lucilaine Valéria de Souza Santos ◽  
Danusa Campos Teixeira ◽  
Raquel Sampaio Jacob ◽  
Míriam Cristina Santos do Amaral ◽  
Liséte Celina Lange

The purpose of studying the biodegradability of pharmaceutical compounds is to evaluate their behaviors in relation to the treatment processes generally used in domestic and industrial wastewater treatment plants. The antibiotic norfloxacin was found to be a recalcitrant compound. The studies conducted showed norfloxacin removal rates of 12% and 18% when biomasses from treatments with activated sludge and anaerobic biodigesters, respectively, were used without acclimatization. This suggests that anaerobic digestion shows better performance for norfloxacin removal. Ecotoxicological tests, using the luminescent marine bacteria Aliivibrio fischeri as the test organism, show that anaerobic digestion could eliminate the toxicity of the antibiotic norfloxacin, even though total degradation of the drug was not observed. The release of norfloxacin during cell lysis suggests the importance of controlling this phenomenon in biological treatment systems that handle wastewater contaminated with norfloxacin, thus preventing the return of this drug to the environment.


2020 ◽  
Vol 10 (24) ◽  
pp. 9141
Author(s):  
Bimi Shrestha ◽  
Rafael Hernandez ◽  
Dhan Lord B. Fortela ◽  
Wayne Sharp ◽  
Andrei Chistoserdov ◽  
...  

The rapid increase in the population is expected to result in the approaching of design capacity for many US wastewater treatment plants (WWTPs) over the next decade. WWTPs treat both municipal and industrial wastewater influents, resulting in the production of biosolids after digestion. Biogas, a potential recovered alternative energy source, is also produced as an output from successful anaerobic digestion. More than 7M of dry tons/year of biosolids produced in the US are most often disposed in either landfills or land-applied (~80%). These options are becoming more challenging to implement due to increases in transportation costs and tipping fees, decreases in the availability of landfill/landfarm space, and most importantly, increased regulations. This situation is strongly encouraging WWTPs to find alternatives for the disposal of biosolids. Developing alternative management/disposal options for biosolids are evolving. One of the most attractive alternative option from a sustainability perspective are biorefineries (converts waste to commercial products), which are a fast-growing option given the push toward circular urban source economies (little to no waste generation). Anaerobic digestion has been widely applied in WWTPs to reduce the volume of activated sludge due to its low energy requirements, effective handling of fluctuations due to organic loading rate, relative flexibility with temperature and pH changes, and since biogas is produced that can be transformed into energy. Various pretreatment methods for waste sludges prior to digestion that have been studied to reduce solids production and increase the energetic content of the biogas are presented and discussed. Solids handling and management, which comprises ~60% of the operational cost of a WWTP, is estimated to save more than $100 M annually by achieving at least 20% reduction in the annual production of biosolids within the US. This review incorporates an assessment of various pretreatment methods to optimize the anaerobic digestion of waste sludges with a focus on maximizing both biosolids reduction and biogas quality.


HortScience ◽  
1990 ◽  
Vol 25 (10) ◽  
pp. 1302-1303 ◽  
Author(s):  
Antonio Heredia ◽  
Martin J. Bukovac

Micelles of two nonionic surfactants (Triton X-114 and Neodol 91) were shown by gel filtration chromatography to solubilize nondissociated NAA molecules in aqueous solutions. Micelle solubilization of nonpolar active ingredients in aqueous spray systems alters the distribution of the chemical in the spray solution and may influence chemical deposit formation and penetration characteristics. Chemical names used: 2-(1-naphthyl)acetic acid (NAA), octylphenoxy polyethoxylate-7.5 POE (Triton X-114), linear alcohol (C9-11) polyethoxylate-6 POE (Neodol 91).


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


1997 ◽  
Vol 323 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Jesús MATEO ◽  
Pedro ROTLLAN ◽  
Eulalia MARTI ◽  
Inmaculada GOMEZ DE ARANDA ◽  
Carles SOLSONA ◽  
...  

The diadenosine polyphosphate hydrolase present in presynaptic plasma membranes from the Torpedo electric organ has been characterized using fluorogenic substrates of the form di-(1,N6-ethenoadenosine) 5´,5‴-P1,Pn-polyphosphate. The enzyme hydrolyses diadenosine polyphosphates (Apn A, where n = 3–5), producing AMP and the corresponding adenosine (n-1) 5´-phosphate, Ap(n-1). The Km values of the enzyme were 0.543± 0.015, 0.478±0.043 and 0.520±0.026 μM, and the Vmax values were 633±4, 592±18 and 576±45 pmol/min per mg of protein, for the etheno derivatives of Ap3A (adenosine 5´,5‴-P1,P3-triphosphate), Ap4A (adenosine 5´,5‴-P1,P4 -tetraphosphate) and Ap5A (adenosine 5´,5‴-P1,P5-pentaphosphate) respectively. Ca2+, Mg2+ and Mn2+ are enzyme activators, with EC50 values of 0.86±0.11, 1.35±0.24 and 0.58±0.10 mM respectively. The fluoride ion is an inhibitor with an IC50 value of 1.38±0.19 mM. The ATP analogues adenosine 5´-tetraphosphate and adenosine 5´-[γ-thio]triphosphate are potent competitive inhibitors and adenosine 5´-[α,β-methylene]diphosphate is a less potent competitive inhibitor, the Ki values being 0.29±0.03, 0.43±0.05 and 7.18±0.8 μM respectively. The P2-receptor antagonist pyridoxal phosphate 6-azophenyl-2´,4´-disulphonic acid behaves as a non-competitive inhibitor with a Ki value of 29.7±3.1 μM, and also exhibits a significant inhibitory effect on Torpedo apyrase activity. The effect of pH on the Km and Vmax values, together with inhibition by diethyl pyrocarbonate, strongly suggests the presence of functional histidine residues in Torpedo diadenosine polyphosphate hydrolase. The enzyme from Torpedo shows similarities with that of neural origin from neurochromaffin cells, and significant differences compared with that from endothelial vascular cells.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


Sign in / Sign up

Export Citation Format

Share Document