Evaluation of the aerobic and anaerobic biodegradability of the antibiotic norfloxacin

2014 ◽  
Vol 70 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Lucilaine Valéria de Souza Santos ◽  
Danusa Campos Teixeira ◽  
Raquel Sampaio Jacob ◽  
Míriam Cristina Santos do Amaral ◽  
Liséte Celina Lange

The purpose of studying the biodegradability of pharmaceutical compounds is to evaluate their behaviors in relation to the treatment processes generally used in domestic and industrial wastewater treatment plants. The antibiotic norfloxacin was found to be a recalcitrant compound. The studies conducted showed norfloxacin removal rates of 12% and 18% when biomasses from treatments with activated sludge and anaerobic biodigesters, respectively, were used without acclimatization. This suggests that anaerobic digestion shows better performance for norfloxacin removal. Ecotoxicological tests, using the luminescent marine bacteria Aliivibrio fischeri as the test organism, show that anaerobic digestion could eliminate the toxicity of the antibiotic norfloxacin, even though total degradation of the drug was not observed. The release of norfloxacin during cell lysis suggests the importance of controlling this phenomenon in biological treatment systems that handle wastewater contaminated with norfloxacin, thus preventing the return of this drug to the environment.

1986 ◽  
Vol 18 (7-8) ◽  
pp. 289-296
Author(s):  
C. F. Ouyang ◽  
T. J. Wan

This study investigated and compared the treatment characteristics of three different kinds of biological wastewater treatment plants (including rotating biological contactor, trickling filter and oxidation ditch) which are currently operated in Taiwan. The field investigation of this study concentrated on the following items: the performance of biological oxygen demand (BOD) and suspended solids (SS) removal; the sludge yield rate of BOD removal; the settleability of sludge solids; the properties of sludge thickening; the power consumption and land area requirement per unit volume of wastewater. Finally, based on the results of the field investigation, a comparison of the treatment characteristics of the three different biological treatment processes was evaluated.


2018 ◽  
Vol 78 (8) ◽  
pp. 1772-1781 ◽  
Author(s):  
Hyungjun (Brian) Jo ◽  
Wayne Parker ◽  
Peiman Kianmehr

Abstract A range of thermal pretreatment conditions were used to evaluate the impact of high pressure thermal hydrolysis on the biodegradability of waste activated sludge (WAS) under aerobic and anaerobic conditions. It was found that pretreatment did not increase the overall extent to which WAS could be aerobically biodegraded. Thermal pretreatment transformed the biodegradable fraction of WAS (XH) to readily biodegradable chemical oxygen demand (COD) (SB) (16.5–34.6%) and slowly biodegradable COD (XB) (45.8–63.6%). The impact of pretreatment temperature and duration on WAS COD fractionation did not follow a consistent pattern as changes in COD solubilization did not correspond to the observed generation of SB through pretreatment. The pretreated WAS (PWAS) COD fractionations determined from aerobic respirometry were employed in anaerobic modeling and it was concluded that the aerobic and anaerobic biodegradability of PWAS differed. It was found that thermal pretreatment resulted in as much as 50% of the endogenous decay products becoming biodegradable in anaerobic digestion. Overall, it was concluded that the COD fractionation that was developed based upon the aerobic respirometry was valid. However, it was necessary to implement a first-order decay process that reflected changes in the anaerobic biodegradability of the endogenous products through pretreatment.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rahul Silori ◽  
Syed Mohammad Tauseef

: In recent years, pharmaceutical compounds have emerged as potential contaminants in the aquatic matrices of the environment. High production, consumption, and limited removal through conventional treatment processes/wastewater treatment plants (WWTPs) are the major causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.


2017 ◽  
Vol 43 (4) ◽  
pp. 50-57 ◽  
Author(s):  
Jan Suschka ◽  
Klaudiusz Grübel

AbstractSewage sludge (municipal, or industrial) treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture) and the second being incineration (ash production), although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs) reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy) production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS) is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of) of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional production and 52% of the total or volatile solids reduction has been confirmed.


2001 ◽  
Vol 44 (4) ◽  
pp. 175-181 ◽  
Author(s):  
A. Jiménez-González ◽  
M. Salazar-González ◽  
M. Gutiérrez-Rojas ◽  
O. Monroy

Nonionic surfactants are used worldwide in various industrial and household applications. Since these compounds are used in aqueous solutions, they primarily enter the environment through sewage and industrial wastewater treatment plants. The objective of this work was to evaluate the inhibitory effect of Triton X-100, a commercial nonionic surfactant, on the anaerobic digestion of lactose. Thus non-ionic surfactants acts as a non-competitive inhibitor with KI = 250 mgL−1 and a inhibition order of 2.4. Nonetheless if give enough time the sludge was able to degrade 79% of Triton at 0.1 gL−1 d−1 in a UASB reactor. An activity test of this sludge showed that Triton inhibited the acetogenic (both propionic and butyric) and acetoclastic activities, while there were high fermentative and hydrogenotrophic activities (80% and 95%, respectively).


2018 ◽  
Vol 251 ◽  
pp. 03029 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena Gogina ◽  
Tran Van Quang

All around the world, activated sludge is the classical and traditional biological wastewater treatment for municipal and industrial wastewater. With the development of social and technology, the concentration of pollutants has been increased, so the performance of the old wastewater treatment plants not guaranteed. Therefore, upgrade and reconstruction wastewater treatment system becomes the main task of protection environment, especially in the developing countries. Application biofilms in process biological wastewater treatment is one of technology method and it has many advantages. In the Sequencing Batch Reactor, the Mutag BioChip 25TM provides to the bacteria an optimal habitat at the surface area, increasing rate of Utilization of Substrates 20 – 30% and efficiency of organic matter removal from 10 – 15%.


2014 ◽  
Vol 69 (6) ◽  
pp. 1282-1288 ◽  
Author(s):  
Å. Davidsson ◽  
H. Kjerstadius ◽  
S. Haghighatafshar ◽  
J. Fick ◽  
M. Olsson ◽  
...  

The application of treated sewage sludge on farmland is a suggested method for recycling nutrients and reducing demand for commercial fertilizer. However, sludge needs to be safe from possible contaminants which can cause acute and long-term health and environmental problems. Residual pharmaceuticals and organic contaminants are mentioned as emerging threats since wastewater treatment plants are not designed to degrade these substances. The aim of this study was to screen and evaluate the presence, and reduction, of pharmaceuticals and polycyclic aromatic hydrocarbons (PAHs) during anaerobic digestion of mixed primary and waste-activated sludge at 35, 55 and 60 °C and during pasteurization at 70 °C. The study showed the difficulty of analysing pharmaceutical compounds in low concentrations in the sludge matrix. No general reduction of these compounds was seen during treatment, but for individual substances some reduction occured. The PAHs were generally not reduced during digestion or pasteurization, but for three substances (indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene (analysed together) and benzo[g,h,i]perylene) reduction (up to 60%) during digestion was seen. Digestion at 35 and 55 °C resulted in about the same order of reduction of the three individual PAHs, which was higher than for digestion at 60 °C.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5484
Author(s):  
Rubén Díez-Montero ◽  
Lucas Vassalle ◽  
Fabiana Passos ◽  
Antonio Ortiz ◽  
María Jesús García-Galán ◽  
...  

Microalgae-based wastewater treatment plants are low-cost alternatives for recovering nutrients from contaminated effluents through microalgal biomass, which may be subsequently processed into valuable bioproducts and bioenergy. Anaerobic digestion for biogas and biomethane production is the most straightforward and applicable technology for bioenergy recovery. However, pretreatment techniques may be needed to enhance the anaerobic biodegradability of microalgae. To date, very few full-scale systems have been put through, due to acknowledged bottlenecks such as low biomass concentration after conventional harvesting and inefficient processing into valuable products. The aim of this study was to evaluate the anaerobic digestion of pretreated microalgal biomass in a demonstration-scale microalgae biorefinery, and to compare the results obtained with previous research conducted at lab-scale, in order to assess the scalability of this bioprocess. In the lab-scale experiments, real municipal wastewater was treated in high rate algal ponds (2 × 0.47 m3), and harvested microalgal biomass was thickened and digested to produce biogas. It was observed how the methane yield increased by 67% after implementing a thermal pretreatment step (at 75 °C for 10 h), and therefore the very same pretreatment was applied in the demonstration-scale study. In this case, agricultural runoff was treated in semi-closed tubular photobioreactors (3 × 11.7 m3), and harvested microalgal biomass was thickened and thermally pretreated before undergoing the anaerobic digestion to produce biogas. The results showed a VS removal of 70% in the reactor and a methane yield up to 0.24 L CH4/g VS, which were similar to the lab-scale results. Furthermore, photosynthetic biogas upgrading led to the production of biomethane, while the digestate was treated in a constructed wetland to obtain a biofertilizer. In this way, the demonstration-scale plant evidenced the feasibility of recovering resources (biomethane and biofertilizer) from agricultural runoff using microalgae-based systems coupled with anaerobic digestion of the microalgal biomass.


Author(s):  
Zahra Abbasi ◽  
Mehdi Ahmadi

Introduction: Macrolides are a group of antibacterial agents. Given their clinical importance, and the consistent rise in resistance among pathogenic bacteria, macrolides have been the targets of extensive research. Materials and Methods: This review considered the number of macrolides in different wastewater and the removal of these drugs. The antibiotics were frequently detected in influents and effluents, ranged from ng/L up to lower μg/L. In influent, the highest concentrations of clarithromycin (6080 ng/L), roxithromycin (>103 ng/L), erythromycin (3900 ng/L), and azithromycin (1949 ng/L) were detected in Croatia, Chinese, USA, and Singapore municipal wastewater treatment plants, respectively. Results: The removal efficiency of macrolides during wastewater treatment processes varies and is essentially dependent on a combination of macrolides physicochemical properties, location of municipal wastewater, and the operating conditions of the treatment systems. The application of alternative techniques, including membrane separation, activated carbon adsorption, advanced oxidation processes, biodegradation, and disinfection were the dominant removal routes for macrolides in different wastewater treatment processes. A combination of these techniques can also be used, leading to higher removals, which may be necessary before the final disposal of the effluents or their reuse for irrigation or groundwater recharge. Conclusion: Many antibiotics cannot be removed completely in wastewater treatment processes and would enter into the environment via effluent and sludge. The molecular structure of macrolides and their load-bearing capacity has led to the advantage of biological treatment over other treatments. However, the main part of the treatment has been done using biological treatment.


Sign in / Sign up

Export Citation Format

Share Document