Drying kinetics and stabilization of sewage sludge in lagoon in hot climate

2002 ◽  
Vol 46 (9) ◽  
pp. 279-286 ◽  
Author(s):  
A. Idris ◽  
O.B. Yen ◽  
M.H.A. Hamid ◽  
A.M. Baki

A sludge lagoon has been adopted as a simple and cost effective method for dewatering of sludge. The processes occurring in a sludge lagoon include thickening, dewatering, storage and stabilization; all happening simultaneously. The objective of this study is to determine the dewatering and drying rates at pilot-scale which occur in a lagoon having different design configurations. Two types of sludge lagoons with different initial sludge depth (0.75 m and 0.375 m) were investigated to measure the drying behavior and drying efficiency. The first design is a sludge lagoon with a clay bottom where the dewatering mechanisms are decanting supernatant and evaporation. The second design is a sludge lagoon installed with a sand and underdrains system, where the dewatering mechanisms are filtration or draining and evaporation. Sludge drying kinetic models with high fitness were plotted to describe the sludge drying behavior. Drying of sludge in a sludge lagoon with a clay bottom can best be described by an exponential function. Whereas, drying of sludge in a sludge lagoon with sand and underdrains system followed a logarithmic function. A lagoon designed with sand and underdrains system and having shallower sludge depth was the most efficient. The reduction in volatile solids was lower than 4% during the study period. The drying process proceeded with an increase in dryness and decline in pH value.

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1097-1104 ◽  
Author(s):  
A. Lyngå ◽  
P. Balmér

Post-nitrification and recycling of the nitrified effluent to an anoxic zone in an activated sludge system for denitrification is proposed as a potentially cost-effective method for nitrogen removal in existing activated sludge treatment plants. Denitrification in a non-nitrifying activated sludge system with a SRT of 3-4 days has been studied in pilot scale. The results show that denitrification rates of at least 10 g N03-N/(kgVSS h) can be achieved. At COD/NO3-N ratios above 15, nitrate supply appears to control the denitrification rate while at COD/NO3-N ratios below 15 the rate appears to be controlled by the supply of easily biodegradable organic matter.


2003 ◽  
Vol 47 (12) ◽  
pp. 247-254
Author(s):  
K. Banerjee ◽  
C.D. Blumenschein

The industrial wastewater treatment plant discussed in this paper generates sludge containing heavy metals, including lead. Occasionally, the concentration of lead in the Toxic Characteristics Leaching Procedure (TCLP) extract from the sludge exceeded the U.S. Environmental Protection Agency (EPA) regulatory limit of 5 mg/l and resulted in the solid waste exhibiting the characteristics of toxicity. The technical and economic feasibility of a process for conditioning the lead-containing sludge was investigated. The results revealed that the lead-laden sludge could be made non-hazardous by chemical conditioning. The lead reduction efficiency of triple super phosphate (TSP) is higher than that of either calcium carbonate or magnesium hydroxide. The laboratory and pilot-scale tests indicated that the conditioning system consistently reduced the lead in the TCLP extract below the regulatory limit of 5 mg/l. The economic feasibility evaluation demonstrated that more than US$450,000 could be saved annually by conditioning the sludge with TSP and disposing it as a non-hazardous material in a landfill. The results obtained from the laboratory as well as from the pilot-scale operation are described and discussed in this paper.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 235
Author(s):  
Fatma Mohamed ◽  
Safwat Hassaballa ◽  
Mohamed Shaban ◽  
Ashour M. Ahmed

In this paper, Fe2O3 and Fe2O3-zeolite nanopowders are prepared by chemical precipitation utilizing the rusted iron waste and natural zeolite. In addition to the nanomorphologies; the chemical composition, structural parameters, and optical properties are examined using many techniques. The Fe2O3-zeolite photocatalyst showed smaller sizes and higher light absorption in visible light than Fe2O3. Both Fe2O3 and Fe2O3-zeolite are used as photocatalysts for methylene blue (MB) photodegradation under solar light. The effects of the contact time, starting MB concentration, Fe2O3-zeolite dose, and pH value on photocatalytic performance are investigated. The full photocatalytic degradation of MB dye (10 mg/L) is achieved using 75 mg of Fe2O3-zeolite under visible light after 30 s, which, to the best of our knowledge, is the highest performance yet for Fe2O3-based photocatalysts. This photocatalyst has also shown remarkable stability and recyclability. The kinetics and mechanisms of the photocatalytic process are studied. Therefore, the current work can be applied industrially as a cost-effective method for eliminating the harmful MB dye from wastewater and recycling the rusted iron wires.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1798
Author(s):  
Ravi Mani Tripathi ◽  
Sang J. Chung

The enzyme mimetic activity of nanomaterials has been applied in colorimetric assays and point-of-care diagnostics. Several nanomaterials have been exploited for their peroxidase mimetic activity toward 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. However, an efficient nanomaterial for the rapid and strong oxidation of TMB remains a strategic challenge. Therefore, in this study, we developed copper-loaded tin oxide (SnO2-Cu) nanocomposites that rapidly oxidize TMB. These nanocomposites have strong absorption at 650 nm and can be used for highly sensitive colorimetric detection. An environmentally friendly (green), rapid, easy, and cost-effective method was developed for the synthesis of these nanocomposites, which were characterized using ultraviolet-visible, energy-dispersive X-ray, and Fourier-transform infrared spectroscopy, as well as scanning electron microscopy. This is the first green synthesis of SnO2-Cu nanocomposites. Their enzyme mimetic activity, which was first studied here, was found to be strongly dependent on the temperature and pH value of the solution. The synthesized nanocomposites have the advantages of low cost, high stability, and ease of preparation for enzyme mimetic applications. Hence, SnO2-Cu nanocomposites are a promising alternative to peroxidase enzymes in colorimetric point-of-care diagnostics.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 298
Author(s):  
Zulhaj Rizki ◽  
Anja E. M. Janssen ◽  
Albert van der Padt ◽  
Remko M. Boom

Fructose and glucose are commonly present together in mixtures and may need to be separated. Current separation methods for these isomers are complex and costly. Nanofiltration is a cost-effective method that has been widely used for separating carbohydrates of different sizes; however, it is not commonly used for such similar molecules. Here, we report the separation of fructose and glucose in a nanofiltration system in the presence of fructooligosaccharides (FOS). Experiments were performed using a pilot-scale filtration setup using a spiral wound nanofiltration membrane with molecular weight cutoff of 1 kDa. We observed three important factors that affected the separation: (1) separation of monosaccharides only occurred in the presence of FOS and became more effective when FOS dominated the solution; (2) better separation was achieved when the monosaccharides were mainly fructose; and (3) the presence of salt improved the separation only moderately. The rejection ratio (Rf/Rg) in a fructose/glucose mixture is 0.92. We reported a rejection ratio of 0.69, which was observed in a mixture of 50 g/L FOS with a fructose to glucose ratio of 4.43. The separation is hypothesized to occur due to selective transport in the FOS layer, resulting in a preferential binding towards fructose.


2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Sevil Karaaslan ◽  
Kamil Ekinci ◽  
Barbaros Salih Kumbul

ABSTRACT: Drying of thin layer tomato was studied using a solar tunnel dryer under the ecological conditions of Isparta, Turkey. During drying process, solar irradiation, drying air temperature, relative humidity, and air velocity were measured constantly in different parts of the dryer. Drying runs were performed using plum tomatoes, characterized by an oval shape, intense red color. The change of tomatoes mass was measured daily. The color measurements of dried products were determined at the beginning and end of experiment. In this study, the fresh tomato samples were sorted, graded, washed in water and then sliced into quarters and halves before pretreated. Sun drying behavior of half and quarter sliced tomatoes pretreated with 10% NaCl solution and non-pretreated was investigated. Results showed that the drying time for pretreated and non-pretreated samples was not significantly different. However, drying time and drying rates were affected by number of tomato slices (quarter and half). Drying characteristic curves were evaluated against thirteen mathematical models and the Midilli et al model was the best descriptive model for solar tunnel drying of thin layer tomato. Color analysis emphasized that if tomatoes are pretreated with 10% NaCl solution, they should be sliced in quarter for better quality.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

Sign in / Sign up

Export Citation Format

Share Document