A hedging point strategy – balancing effluent quality, economy and robustness in the control of wastewater treatment plant

2002 ◽  
Vol 45 (4-5) ◽  
pp. 317-324 ◽  
Author(s):  
P. Ingildsen ◽  
G. Olsson ◽  
Z. Yuan

An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to “reduce one's risk of loss on a bet or speculation by compensating transactions on the other side” (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.

1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


2010 ◽  
Vol 61 (9) ◽  
pp. 2259-2266 ◽  
Author(s):  
Styliani Kantartzi ◽  
Paraschos Melidis ◽  
Alexander Aivasidis

In the present study, a laboratory scale system, consisting of a primary settling tank, a continuous stirred tank reactor and a clarifier were constructed and operated, using wastewater from the municipal wastewater treatment plant in Xanthi, Greece. The system operated under intermittent aeration in aerobic/anoxic conditions and feeding of the wastewater once in every cycle. The unit was inoculated with sludge, which originated from the recirculation stream of the local wastewater treatment plant. The wastewater was processed with hydraulic retention time (HRT) of 12 h, in which various experimental states were studied regarding the combination of aerobic and anoxic intervals. The wastewater was fed in limited time once in every cycle of aerobic/anoxic conditions at the beginning of the anoxic period. The two states that exhibited highest performance in nitrification and total nitrogen removal were, then, repeated with HRT of 10 h. The results show that, regarding the nitrification stage and the organic load removal, the intermittent system achieved optimum efficiency, with an overall removal of biological oxygen demand (BOD5) and ammonium nitrogen in the range of 93–96% and 91–95% respectively. As far as the total nitrogen removal is concerned, and if the stage of the denitrification is taken into account, the performance of the intermittent system surpassed other methods, as it is shown by the total Kjeldahl nitrogen (TKN) removal efficiency of 85–87%. These operating conditions suppressed the growth of filamentous organisms, a fact reflected at the SVI values, which were lower than 150 ml/g.


2014 ◽  
Vol 67 (5) ◽  
Author(s):  
M. F. Rahmat ◽  
S. I. Samsudin ◽  
N. A. Wahab ◽  
Mashitah Che Razali ◽  
Muhammad Sani Gaya

Wastewater treatment plant (WWTP) is highly known with the variation and uncertainty of the parameters, making them a challenge to be tuned and controlled. In this paper, an adaptive decentralized PI controller is developed for nonlinear activated sludge WWTP. The work is highlighted in auto-tuning the PI control parameters in satisfying straighten effluent quality and hence optimizing the nitrogen removal. The PI controller parameters are obtained by using simple updating algorithm developed based on adaptive interaction theory. The error function is minimized directly by approximate Frechet tuning algorithm without explicit estimation of the model. The effectiveness of the proposed controller is then validated by comparing the performance of activated sludge process to the benchmark PI under three different weather conditions with realistic variations in influent flow rate and composition. The algorithm is effectively applied in activated sludge system with improved dynamic performances in effluent quality index and energy consumed of Benchmark Simulation Model No.1.


Author(s):  
Ahmad I. Abbas ◽  
Mohammad D. Qandil ◽  
Muhannad R. Al-Haddad ◽  
Mandana S. Saravani ◽  
Ryoichi S. Amano

Wastewater treatment plants (WWTPs) are a significant energy consumer, yet there are several opportunities of implementing on-site power generation systems. Within the treatment process, the high flow rate of effluent is produced and discharged to a nearby water body by gravity. Thus, hydro turbines can be utilized to generate power in such application due to a difference in elevation and high flow rate. This paper presents a case study of introducing a hydro turbine in wastewater treatment plant in Wisconsin and evaluating the power output in addition to determining the energy savings. The wastewater treatment plant considered in this study has an effluent flow rate of 190 MGD (million gallons per day) and elevation difference of 3 meters (10 feet) between the final stage of treatment and the discharge point. Based on the aforementioned parameters; hubless rim-drive Kaplan type hydro turbine (RDT) is the optimal choice to be used in such application. The RDT is designed and optimized by using in-house code. A computational fluid dynamics (CFD) software is applied to evaluate the performance of the proposed model, and the system is simulated through HOMER software to validate the results generated by the CFD. The expected savings is estimated to be 1,564 MWh/year.


Sign in / Sign up

Export Citation Format

Share Document