Quality assessment of reclaimed water for its possible use for crop irrigation and aquifer recharge in Ensenada, Baja California, Mexico

2004 ◽  
Vol 50 (2) ◽  
pp. 285-291 ◽  
Author(s):  
L. Mendoza-Espinosa ◽  
M. Victoria Orozco-Borbón ◽  
Patricia Silva-Nava

The city of Ensenada, Baja California, has three wastewater treatment plants and is one of the few cities in Mexico that treats all the wastewater that it generates. The largest wastewater treatment plant, called El Naranjo, treats on average 316 liters per second and complies with even the most stringent Mexican standards although a stricter control has to be achieved in order to avoid environmental and health problems At the moment, only 2% of the treated wastewater is used for the irrigation of sports fields and public landscape. The reclaimed water could be reused for the irrigation of crops for non-human consumption or ornamental products and/or for aquifer recharge. For reuse practices, two facts must be considered: a) an important part of the valley's production is exported to the USA and b) 30% of the city of Ensenada's water supply is obtained from the Maneadero aquifer. There is currently no Mexican legislation to stipulate adequate standards for aquifer recharge and decisions should be based on legislation from other places. Therefore, at the moment there is still a lack of technical and scientific elements to be able to make the best decision about the reuse of the wastewater.

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


Author(s):  
Dejan Vasović ◽  
Sandra Stanković ◽  
Ljiljana Takić

Nowadays, the Republic of Serbia is at the bottom of the scale of European countries in terms of public utility equipment of the respective communal infrastructure particularly within the area of wastewater collection and treatment. The current situation in the area of water resources management in the Republic of Serbia indicates that the basic problems are insufficient construction of sewerage infrastructure in cities, i.e. insufficient coverage with the sewerage network of users connected to either public or private water supply network, followed by an insufficient number of constructed and operative wastewater treatment plants. In this sense, a particular problem is a requirement for relatively large initial investments in wastewater collection and treatment sector. Also, a special difficulty is the low price of delivered and channeled water within the existing system of public utilities, which is insufficient to provide maintenance of the existing water supply and sewage systems, regardless the future development and improvement of the existing system. Currently, only 10% of total produced wastewater quantity is treated in the Republic of Serbia, with different procedures and with uneven and, most often, insufficient purification effects. In addition to wastewater generated by the population (i.e. households connected to the sewer system), the special problem is the inadequate treatment of industrial wastewater. On the other hand, disposition of treated wastewater, disposal of separated sludge from the treatment process, odor and pest control, noise control, working conditions, etc. are significant challenges for the scientists, professionals and operators. Therefore, the aim of this paper is to comprehensively examine all environmental aspects on the example of a large wastewater treatment plant which is to be gained by the city of Niš, in the very near future.


2006 ◽  
Vol 54 (10) ◽  
pp. 87-93 ◽  
Author(s):  
T. Hashimoto ◽  
K. Takahashi ◽  
T. Murakami

Since the natural estrogens 17 β-estradiol (E2) and estron (E1), and the synthetic estrogen 17 α-ethynyl estradiol (EE2) have strong endocrine disrupting effects and the tendency to persist in effluent from wastewater treatment plants, effective measures are needed to remove them from wastewater. In this research, to gain an understanding of the characteristics of estrogen decomposition by ozonation, experiments were conducted using effluent from an actual wastewater treatment plant. In this experiment, estrogen was added to effluent at a concentration of 200 ng/l and 20 ng/l before the ozonation experiments. The results showed 90% or more of estrogen concentration and estrogenic activity of E2, E1 and EE2 to be removed at an ozone dose of 1 mg/l. At an ozone dose of 3 mg/l, the estrogen concentration and estrogenic activity of E2, E1 and EE2 in the treated water fell below the detection limit. The removal rate was not influenced by the kind of estrogen. No generation of byproducts with estrogenic activity was observed. The authors conclude that estrogen in secondary treated wastewater can be almost entirely removed at the practical ozone dose rate applied for the purpose of disinfection, which is up to about 5 mg/l.


2018 ◽  
Author(s):  
Olayinka Osuolale ◽  
Anthony Okoh

ABSTRACTBackgroundPoorly or partially treated wastewater disposed of can contaminate water and even properly treated sewage can have its problems. The highlight of this danger is wastewater treatment plants serving as reservoir for proliferation of antibiotic resistant organisms. We have reported the state of two wastewater treatment in the Eastern Cape of South Africa which discharge poorly and partially treated effluents. Our aims to identify Vibrio spp. and their antibiotic profiles in treated final effluent discharge from wastewater treatment plant.MethodsCulture based approach using the TCBS agar for isolationVibriospp., presumptive isolates were purified and confirmed using PCR. The confirmed isolated were also genotyped to identify the species present. The antibiotic profiling of the confirmed isolates was using the CLSI recommended first line antibiotics for Vibrio.ResultsOut of the 786 presumptive isolates, 374 were confirmed asVibriospp. None of the Vibrio spp. pathotypes were present in the confirmed isolates. Randomized isolates of 100 Vibrio spp. were selected, > 90 % of the isolates were susceptible to Ciprofloxacin, and > 50 – 80 % for Ampicillin, Chloramphenicol, Tetracycline, Cefotaxime, and Trimethoprim-sulfamethoxazole respectively.ConclusionsWe are able to isolate Vibrio spp. from treated effluents but none of their pathotypes were present. The antibiotic agents considered for primary testing which are ciprofloxacin was the most effective of the antibiotic drugs, followed by cefotaxime, tetracycline with less susceptibility. Contamination from discharged effluents from wastewater treatment can lead to spread of spread of disease in this environment. The WWTPs studied are sources of pollution to surface water with environmental and public health.


2021 ◽  
Author(s):  
Semase Matseleng ◽  
Ozekeke Ogbeide ◽  
Patricks' Otomo Voua

Abstract Wastewater treatment facilities in developing countries like South Africa are major sources of contaminants via effluent into the environment, which could portend high toxicity risks for non-target flora and fauna. To this end, a study was conducted to determine the ecotoxicological responses of selected organism to treated and untreated wastewater from the wastewater treatment plants in an industrial town. The snail Helix pomatia was exposed to OECD artificial soil spiked with untreated or treated wastewater at the following concentrations: 0, 25, 50, 75, 100%. The ecotoxicological responses of Helix pomatia to wastewater were determined by assessing the biomass, survival, reproduction and biomarker responses (Catalase ‒ CAT and Acetylcholinesterase ‒ AChE activities). The overall results showed significant effects on the survival, reproduction and biomass of H. pomatia. Similar results were observed for juvenile emergence. An EC50 of 5.751% for egg production and an EC50 of 6.233% for juvenile emergence were determined in the untreated wastewater. Such indices could not be computed for the treated wastewater, indicating a decreased in toxicity between the untreated and the treated samples. For both the AChE and CAT activities, there was no statistical difference between treated and untreated wastewater treatments. The results from this study highlight the toxic effects of untreated wastewater and indicate that treated wastewater (effluent) released from the wastewater treatment plant in Phuthaditjhaba remains suitable for invertebrate fauna such as H. pomatia.


2021 ◽  
Author(s):  
Yan Li ◽  
Ethan Wood ◽  
Gergely Kosa ◽  
Bushra Muzamil ◽  
Christian Vogelsang ◽  
...  

Abstract This study demonstrated that the application of filamentous co-culture could be a promising supplementary approach to further purify municipal tertiary wastewater in Nordic country. Initial screening of 25 algae strains across multiple genera revealed that Spirogyra sp. and Klebsormidium sp. were suitable for use as a coculture for phycoremediation of the tertiary effluent from a wastewater treatment plant, and this result was validated in three consecutive outdoor pilot tests at 10–15 oC. In the first two batches of pilot tests, the total prosperous and ammonium were depleted close to zero in 24 hours, while the pH in the wastewater increased from 7 to 9. In the 3rd batch, CO2 was thereby added for pH control. Macronutrients (N and P) were successfully removed from the treated wastewater. The total algae biomass increased 2 to 3 times over 7 days with average algae productivity of 1.68 g m2 d− 1. Meanwhile, the produced algae biomass accumulated notable mineral elements (Ca, Mg, K, Fe and Al) and some heavy metals at levels of g kg− 1 and mg kg− 1, respectively. In light of circular economy concept, the produced biomass could be used for different valorizations based on the analytical analysis. This study provides a new insight of phycoremediation for further purification of municipal treated wastewater, by effectively using filamentous algae coculture. Given a great potential for further optimization and improvement, this proof of concept will benefit to the green transition of wastewater treatment plants in Nordic country.


2012 ◽  
Vol 78 (18) ◽  
pp. 6643-6646 ◽  
Author(s):  
Vincenza Romano ◽  
Vincenzo Pasquale ◽  
Karel Krovacek ◽  
Federica Mauri ◽  
Antonella Demarta ◽  
...  

ABSTRACTThe occurrence ofClostridium difficilein nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterizedC. difficilestrains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+B+CDT+), whereas 51% showed the profile A+B+CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes ofC. difficileinvolved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 731 ◽  
Author(s):  
Arianna Renau-Pruñonosa ◽  
Olga García-Menéndez ◽  
María Ibáñez ◽  
Enric Vázquez-Suñé ◽  
Clara Boix ◽  
...  

In urban, industrial, and agricultural areas, a vast array of contaminants may be found because they are introduced into the aquifers by different recharge sources. The emerging contaminants (ECs) correspond to unregulated contaminants, which may be candidates for future regulation depending on the results of research into their potential effects on health and on monitoring data regarding their occurrence. ECs frequently found in wastewater, such as acetaminophen, carbamazepine, primidone, and sulfamethoxazole, may be good indicators of the introduction of the reclaimed water to the aquifers. The resistance of the ECs to removal in wastewater treatment plants (WWTPs) causes them to be appropriate sewage markers. Plana de Castellón (Spain) is a coastal area that has been characterized by intensive citrus agriculture since the 1970s. Traditionally, in the southern sector of Plana de Castellón, 100% of irrigation water comes from groundwater. In recent years, local farmers have been using a mixture of groundwater and reclaimed water from wastewater treatment plants (WWTPs) to irrigate the citrus. The aims of the present study were: (i) to assess the occurrences, spatial distributions, and concentrations of selected ECs, including 32 antibiotics, 8 UV filters, and 2 nonsteroidal anti-inflammatory drugs, in groundwater in a common agricultural context; (ii) to identify the recharge (pollution) sources acting as the origin of the ECs, and (iii) to suggest ECs as indicators of reclaimed water arrival in detrital heterogeneous aquifers. The obtained data provided relevant information for the management of water resources and elucidated the fate and behavior of emerging contaminants in similar contexts.


2021 ◽  
Vol 11 (22) ◽  
pp. 10853
Author(s):  
Pablo Viveros ◽  
Leonardo Miqueles ◽  
Rodrigo Mena ◽  
Fredy Kristjanpoller

Wastewater treatment plants (WWTPs) face two fundamental challenges: on the one hand, they must ensure an efficient application of preventive maintenance plans for their survival under competitive environments; and on the other hand, they must simultaneously comply with the requirements of reliability, maintainability, and safety of their operations, ensuring environmental care and the quality of their effluents for human consumption. In this sense, this article seeks to propose a cost-efficient alternative for the execution of preventive maintenance (PM) plans through the formulation and optimization of the opportunistic grouping strategy with time-window tolerances and non-negligible execution times. The proposed framework is applied to a PM plan for critical high-risk activities, addressing primary treatment and anaerobic sludge treatment process in a wastewater treatment plant. Results show a 26% system inefficiency reduction versus the initial maintenance plan, demonstrating the capacity of the framework to increase the availability of the assets and reduce maintenance interruptions of the WWTP under analysis.


2000 ◽  
Vol 42 (9) ◽  
pp. 65-72 ◽  
Author(s):  
B. Nielsen ◽  
G. Petersen

Increasing sludge disposal costs have highly intensified the interest in reducing the sludge quantities from Danish wastewater treatment plants. By upgrading existing mesophilic digesters to the thermophilic temperature range, the retention time can be halved and many digesters designed only for primary sludge will have sufficient capacity to treat also the biological excess sludge. At the moment, eight full-scale thermophilic digesters are in operation in Denmark and five are under construction. This paper describes the full-scale experience gained from digestion of biological excess sludge as well as a mixture of primary and biological sludge. Thermophilic digestion has proven to be a good and stable process for solids reduction and pathogen removal. The digested sludge can be dewatered to a high solids content and thereby the sludge quantity for disposal can be reduced by 30-40% depending on the type of wastewater treatment plant. A drawback of the process is that the polymer costs for sludge dewatering may be increased depending on the sludge type.


Sign in / Sign up

Export Citation Format

Share Document