Comparative stability and growth requirements of S. aureus and faecal indicator bacteria in seawater

2006 ◽  
Vol 54 (3) ◽  
pp. 169-175 ◽  
Author(s):  
R.S. Fujioka ◽  
T.M. Unutoa

The fate (stability, multiplication) of S. aureus, E. coli and E. faecalis was determined in three classes of recreational waters (seawater, estuarine, stream) supplemented with nutrients in the form of sewage and peptone. In the absence of sunlight (24±2 °C), all bacteria in all water samples did not multiply and were slowly (days) inactivated. When 50% sewage was added to all water samples, E. coli and E. faecalis multiplied but S. aureus did not. When peptone (0.05%, 0.5%) was the added nutrient, the three bacteria multiplied. In the presence of sunlight (15–27 °C), S. aureus was inactivated rapidly (hours) in all water samples. These results show that when their nutritional requirements are met, S. aureus, E. coli and E. faecalis can multiply in the high salinity conditions of seawater. However, under environmental conditions, sunlight is an effective natural bactericidal agent.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractBackground Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman’s rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.


2012 ◽  
Vol 58 (5) ◽  
pp. 668-677 ◽  
Author(s):  
A.D. Samarajeewa ◽  
S.M. Glasauer ◽  
J.D. Lauzon ◽  
I.P. O’Halloran ◽  
Gary W. Parkin ◽  
...  

A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens ( Salmonella sp.) and indicator bacteria ( Escherichia coli and Clostridium perfringens ) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.


2012 ◽  
Vol 23 (2) ◽  
pp. e20-e25 ◽  
Author(s):  
Patricia Turgeon ◽  
Pascal Michel ◽  
Patrick Levallois ◽  
Pierre Chevalier ◽  
Danielle Daignault ◽  
...  

INTRODUCTION: Human exposure to antimicrobial-resistant bacteria may result in the transfer of resistance to commensal or pathogenic microbes present in the gastrointestinal tract, which may lead to severe health consequences and difficulties in treatment of future bacterial infections. It was hypothesized that the recreational waters from beaches represent a source of antimicrobial-resistantEscherichia colifor people engaging in water activities.OBJECTIVE: To describe the occurrence of antimicrobial-resistantE coliin the recreational waters of beaches in southern Quebec.METHODS: Sampling occurred over two summers; in 2004, 674 water samples were taken from 201 beaches, and in 2005, 628 water samples were taken from 177 beaches. The minimum inhibitory concentrations of the antimicrobial-resistantE coliisolates against a panel of 16 antimicrobials were determined using microbroth dilution.RESULTS: For 2004 and 2005, respectively, 28% and 38% of beaches sampled had at least one water sample contaminated byE coliresistant to one or more antimicrobials, and more than 10% of the resistant isolates were resistant to at least one antimicrobial of clinical importance for human medicine. The three antimicrobials with the highest frequency of resistance were tetracycline, ampicillin and sulfamethoxazole.DISCUSSION: The recreational waters of these beaches represent a potential source of antimicrobial-resistant bacteria for people engaging in water activities. Investigations relating the significance of these findings to public health should be pursued.


2007 ◽  
Vol 73 (6) ◽  
pp. 1961-1967 ◽  
Author(s):  
Tatiana Kon ◽  
Susan C. Weir ◽  
E. Todd Howell ◽  
Hung Lee ◽  
Jack T. Trevors

ABSTRACT Research was undertaken to characterize Escherichia coli isolates in interstitial water samples of a sandy beach on the southeastern shore of Lake Huron, Ontario, Canada. A survey of the beach area revealed the highest abundance of E. coli in interstitial water of the foreshore beach sand next to the swash zone. Higher concentrations of E. coli (up to 1.6 × 106 CFU/100 ml of water) were observed in the interstitial water from the sampling holes on the beach itself compared to lake water and sediment. Repetitive extragenic palindromic PCR (REP-PCR) was used to characterize the genetic diversity of E. coli isolates from interstitial water samples on the beach. E. coli isolates from the same sampling location frequently exhibited the same REP-PCR pattern or were highly similar to each other. In contrast, E. coli isolates from different sampling locations represented populations distinct from each other. This study has identified a unique ecological niche within the foreshore area of the beach where E. coli may survive and possibly multiply outside of host organisms. The results are of interest as increasing concentrations of E. coli in recreational waters are often considered to be an indication of recent fecal pollution.


2006 ◽  
Vol 4 (3) ◽  
pp. 347-356 ◽  
Author(s):  
W. Ahmed ◽  
R. Neller ◽  
M. Katouli

A biochemical fingerprinting method (the PhPlate system) was used to compare similarities between Escherichia coli and enterococci populations from surface water samples with those found in different animal species during the wet and the dry seasons in order to predict the dominant source(s) of fecal contamination in a local creek. A significant increase in the number and diversity of enterococci was observed in the creek during the wet season. Enterococci population from water samples also showed a higher population similarity with animal species than did E. coli. A higher population similarity was found between both indicator bacteria and animal species during the wet season with highest population similarities found in dogs, horses, cows and kangaroos. In contrast, a low population similarity was found for both fecal indicator bacteria from humans with water samples during the wet and the dry seasons, indicating that humans are not a major source of contamination in the studied creek. The results also indicate that the population similarity analysis of enterococci population has an advantage over E. coli in tracing the possible source(s) of contamination in the studied creek and that population similarity analysis as used in this study can be used to predict the source(s) of fecal contamination in surface waters.


2021 ◽  
Vol 3 ◽  
Author(s):  
Cristina P. Fernández-Baca ◽  
Catherine M. Spirito ◽  
Justin S. Bae ◽  
Zsofia M. Szegletes ◽  
Nathan Barott ◽  
...  

Public swimming beaches often rely on culture-based methods to determine if fecal indicator bacteria (FIB) levels are greater than health risk-based beach action values (BAV). The slow turnaround time of culture-based assays can prevent effective beach closure and reopening decisions. Faster testing methods that can be completed on-site are needed. Additionally, beach closures are currently based on high FIB levels, but at-present there are no tools to examine the health risks to bathers from myriad pathogens (e.g., bacteria, viruses, protozoa) that may be present in recreational waters. Twelve New York State beaches (n = 9 freshwater and n = 3 marine) were monitored over the course of summer 2018, and two of the freshwater beaches were monitored in fall 2017 as part of a preliminary study. A rapid, in-field workflow for detecting fecal enterococci in water samples was tested using four assays on two Biomeme handheld devices. All Biomeme-based workflows involved in-field DNA extractions and qPCR using portable devices. Beach water samples were also analyzed using EPA-approved or EPA-based qPCR methods: two culture-based methods, Enterolert (targeting enterococci at freshwater and marine beaches) and Colilert (targeting E. coli at freshwater beaches); and one qPCR method based on EPA 1611.1. For low abundance pathogen quantification, nanoscale-qPCR was conducted in 2018 using the Pathogen Panel which targeted 12 viral, bacterial, and protozoal pathogens. In fall 2017, the qPCR-based methods performed similarly to Enterolert (r2 from 0.537 to 0.687) and correctly classified 62.5–75.0% of water samples for a BAV of 104 MPN per 100 ml. In summer 2018, the correlation between Enterococcus levels based on Biomeme qPCR and Enterolert varied substantially between the 12 beaches. Inclusion of diverse regions and beach types may have confounded the Biomeme qPCR results. The EPA 1611.1-based method showed a weak, significant correlation (r2 = 0.317, p = 0.00012) with Enterolert. Nanoscale-qPCR showed low-levels of pathogens present at all beach sites; but only three showed up with any substantial frequency, E. coli eae (25% of samples), norovirus (31.4%), and Giardia lamblia (11.4%). Preliminary studies to establish beach-specific correlation curves between rapid qPCR and Enterolert methods are needed before any qPCR assay is used to inform beach decisions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. McKee ◽  
Paul M. Bradley ◽  
David Shelley ◽  
Shea McCarthy ◽  
Marirosa Molina

AbstractRecreational waters are primary attractions at many national and state parks where feral swine populations are established, and thus are possible hotspots for visitor exposure to feral swine contaminants. Microbial source tracking (MST) was used to determine spatial and temporal patterns of fecal contamination in Congaree National Park (CONG) in South Carolina, U.S.A., which has an established population of feral swine and is a popular destination for water-based recreation. Water samples were collected between December 2017 and June 2019 from 18 surface water sites distributed throughout CONG. Host specific MST markers included human (HF183), swine (Pig2Bac), ruminant (Rum2Bac), cow (CowM3), chicken (CL), and a marker for shiga toxin producing Escherichia coli (STEC; stx2). Water samples were also screened for culturable Escherichia coli (E. coli) as part of a citizen science program. Neither the cow nor chicken MST markers were detected during the study. The human marker was predominantly detected at boundary sites or could be attributed to upstream sources. However, several detections within CONG without concurrent detections at upstream external sites suggested occasional internal contamination from humans. The swine marker was the most frequently detected of all MST markers, and was present at sites located both internal and external to the Park. Swine MST marker concentrations ≥ 43 gene copies/mL were associated with culturable E. coli concentrations greater than the U.S. Environmental Protection Agency beach action value for recreational waters. None of the MST markers showed a strong association with detection of the pathogenic marker (stx2). Limited information about the health risk from exposure to fecal contamination from non-human sources hampers interpretation of the human health implications.


2004 ◽  
Vol 4 (2) ◽  
pp. 39-45 ◽  
Author(s):  
M.-L. Hänninen ◽  
R. Kärenlampi

The sources for drinking water in Finland are surface water, groundwater or artificially recharged groundwater. There are approximately 1400 groundwater plants in Finland that are microbiologically at a high risk level because in most cases they do not use any disinfection treatment. Campylobacter jejuni has caused waterborne epidemics in several countries. Since the middle of the 1980s, C. jejuni has been identified as the causative agent in several waterborne outbreaks in Finland. Between 1998 and 2001, C. jejuni or C. upsaliensis caused seven reported waterborne epidemics. In these epidemics approximately 4000 people acquired the illness. Most of the outbreaks occurred in July, August , September or October. In four of them source water and net water samples were analysed for total coliforms or fecal coliforms, E. coli and campylobacters. We showed that large volumes of water samples in studies of indicator organisms (up to 5000 ml) and campylobacters (4000–20,000 ml) increased the possibility to identify faecal contamination and to detect the causative agent from suspected sources.


1993 ◽  
Vol 27 (3-4) ◽  
pp. 267-270 ◽  
Author(s):  
M. T. Augoustinos ◽  
N. A. Grabow ◽  
B. Genthe ◽  
R. Kfir

A fluorogenic β-glucuronidase assay comprising membrane filtration followed by selective enumeration on m-FC agar at 44.5°C and further confirmation using tlie 4-metliylumbelliferyl-β-D-glucuronide (MUG) containing medium was evaluated for the detection of Escherichia coli in water. A total of 200 typical blue and non-typical blue colonies were isolated from sea and fresh water samples using initial selective enumeration on m-FC agar. Pure cultures of the selected colonies were further tested using the MUG assay and identified using the API 20E method. Of the colonies tested which were shown to be positive using the MUG assay 99.4% were Escherichia coli. The results of this study indicate the combination of the m-FC method followed by the MUG assay to be highly efficient for the selection and confirmation of E. coli from a wide range of environmental waters.


Sign in / Sign up

Export Citation Format

Share Document