An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs)

2006 ◽  
Vol 54 (6-7) ◽  
pp. 223-230 ◽  
Author(s):  
J. Marsalek ◽  
B.G. Krishnappan ◽  
K. Exall ◽  
Q. Rochfort ◽  
R.P. Stephens

An elutriation apparatus was proposed for testing the settleability of combined sewer outflows (CSOs) and applied to 12 CSO samples. In this apparatus, solids settling is measured under dynamic conditions created by flow through a series of settling chambers of varying diameters and upward flow velocities. Such a procedure reproduces better turbulent settling in CSO tanks than the conventional settling columns, and facilitates testing coagulant additions under dynamic conditions. Among the limitations, one could name the relatively large size of the apparatus and samples (60 L), and inadequate handling of floatables. Settleability results obtained for the elutriation apparatus and a conventional settling column indicate large inter-event variation in CSO settleability. Under such circumstances, settling tanks need to be designed for “average” conditions and, within some limits, the differences in test results produced by various settleability testing apparatuses and procedures may be acceptable. Further development of the elutriation apparatus is under way, focusing on reducing flow velocities in the tubing connecting settling chambers and reducing the number of settling chambers employed. The first measure would reduce the risk of floc breakage in the connecting tubing and the second one would reduce the required sample size.

1996 ◽  
Vol 33 (9) ◽  
pp. 277-284 ◽  
Author(s):  
Gebhard J. Weiß ◽  
Steven Michelbach

Vortex separators as new devices for combined sewer overflows (CSOs) claim good efficiencies which can be confirmed by laboratory tests. Such model tests are usually performed in reduced scale and under steady-flow conditions. This paper describes a possible way to transfer model test results to the prototype scale. As a first step, the most essential parameters must be accounted for using a proper dimensional analysis which also considers scale effects. It will result in dimensionless efficiency curves which allow prediction of prototype efficiencies, yet valid for steady flow only. To take into account the variability of annual inflow as well as dynamic effects like filling and emptying of a particular separator, the efficiency characteristics of the separator are combined with a quantity-quality simulation model. Such a numerical model is able to compute inflow and outflow hydrographs and pollutographs and to account for the catchment data at the given site. It allows the computation of annual pollutant loads as well as of the percentage of sewage sediment fed to the treatment plant, i.e. an annual separation efficiency.


2006 ◽  
Vol 1 (1) ◽  
Author(s):  
K. Suzuki ◽  
T. Fujihashi ◽  
S. Kosanda ◽  
H. Hinuma ◽  
R. Hata

A novel high-rate sedimentation process has been developed for directly treating combined sewer overflows (CSOs). This was done using a test facility at an actual wastewater treatment plant in Tokyo. Pilot test results, carried out 13 times, from December 2002 to July 2003 in wet weather, suggested that the process was suitable for treatment of CSOs. The performance of the process was favorable at 50 m3/(m2 ·h) up to 880 mg/L influent TSS, removing between 78 % and 91 % of TSS at loading and between 64 % and 85 % of BOD5 also at loading. The pilot testing clarified that a decrease in the influent alkalinity due to rain water caused a drop in the pH after FeCl3 addition and thus improved coagulation, with a significant decrease in the effluent TSS. Mixing, coagulation and flocculation were carried out in a baffling type mixing tank to enable uniform mixing without any short-passes. Coagulation conditions in this mixing method were evaluated and results clarified that rapid mixing was required momentarily after each addition of FeCl3 and polymer, i.e. to diffuse these additives into the influent.


2006 ◽  
Vol 14 (2) ◽  
pp. 489-493
Author(s):  
Michael J. Gefell ◽  
Erin C. Rankin ◽  
William R. Jones

1996 ◽  
Vol 31 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. Stirrup

Abstract The Regional Municipality of Hamilton-Wentworth operates a large combined sewer system which diverts excess combined sewage to local receiving waters at over 20 locations. On average, there are approximately 23 combined sewer overflows per year, per outfall. The region’s Pollution Control Plan, adopted by Regional Council in 1992, concluded that the only reasonable means of dealing with large volumes of combined sewer overflow in Hamilton was to intercept it at the outlets, detain it and convey it to the wastewater treatment plant after the storm events. The recommended control strategy relies heavily on off-line storage, with an associated expansion of the Woodward Avenue wastewater treatment plant to achieve target reductions of combined sewer overflows to 1–4 per year on average. The region has begun to implement this Pollution Control Plan in earnest. Three off-line detention storage tanks are already in operation, construction of a fourth facility is well underway, and conceptual design of a number of other proposed facilities has commenced. To make the best possible use of these facilities and existing in-line storage, the region is implementing a microcomputer-based real-time control system. A number of proposed Woodward Avenue wastewater treatment plant process upgrades and expansions have also been undertaken. This paper reviews the region's progress in implementing these control measures.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 69-76 ◽  
Author(s):  
A. Durchschlag

As a result of urbanization, the pollutant discharges from sources such as treatment plant effluents and polluted stormwaters are responsible for an unacceptable water quality in the receiving waters.In particular, combined sewer system overflows may produce great damage due to a shock effect. To reduce these combined sewer overflow discharges, the most frequently used method is to build stormwater storage tanks. During storm water runoff, the hydraulic load of waste water treatment plants increases with additional retention storage. This might decrease the treatment efficiency and thereby decrease the benefit of stormwater storage tanks. The dynamic dependence between transport, storage and treatment is usually not taken into account. This dependence must be accounted for when planning treatment plants and calculating storage capacities in order to minimize the total pollution load to the receiving waters. A numerical model will be described that enables the BOD discharges to be continuously calculated. The pollutant transport process within the networks and the purification process within the treatment plants are simulated. The results of the simulation illustrate; a statistical balance of the efficiency of stormwater tanks with the treatment plant capacity and to optimize the volume of storm water tanks and the operation of combined sewer systems and treatment plants.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1831-1840 ◽  
Author(s):  
L. A. Roesner ◽  
E. H. Burgess

Increased concern regarding water quality impacts from combined sewer overflows (CSOs) in the U.S. and elsewhere has emphasized the role of computermodeling in analyzing CSO impacts and in planning abatement measures. These measures often involve the construction of very large and costly facilities, and computer simulation during plan development is essential to cost-effective facility sizing. An effective approach to CSO system modeling focuses on detailed hydraulic simulation of the interceptor sewers in conjunction with continuous simulation of the combined sewer system to characterize CSOs and explore storage-treatment tradeoffs in planning abatement facilities. Recent advances in microcomputer hardware and software have made possible a number of new techniques which facilitate the use of computer models in CSO abatement planning.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1295-1304 ◽  
Author(s):  
C. Jefferies

Visible pollution discharged from two combined sewer overflows were studied using passive Trash Trap devices and the UK Water Research Centre Gross Solids Sampler. Relationships are presented for the number of visible solids and the mass of gross solids discharged during an event. The differences in the behaviour of the overflow types are reported on and they are categorised using the Trash Traps.


1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.


Sign in / Sign up

Export Citation Format

Share Document