Evaluation of an optimal fill strategy to biodegrade inhibitory wastewater using an industrial prototype discontinuous reactor

2007 ◽  
Vol 55 (7) ◽  
pp. 47-54 ◽  
Author(s):  
G. Buitrón ◽  
I. Moreno-Andrade ◽  
J.A. Linares-García ◽  
J. Pérez ◽  
M.J. Betancur ◽  
...  

This work presents the results and discussions of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a synthetic wastewater constituted by 4-chlorophenol. An aerobic automated discontinuous reactor system of 1.3 m3, with a useful volume of 0.75 m3 and an exchange volume of 60% was used. As part of the control strategy influent is fed into the reactor in such a way as to obtain the maximal degradation rate avoiding inhibition of microorganisms. Such an optimal strategy was able to manage increments of 4-chlorophenol concentrations in the influent between 250 and 1000 mg/L. it was shown that the optimally controlled influent flow rate strategy brings savings in reaction time and flexibility in treating high concentrations of an influent with toxic characteristics.

2006 ◽  
Vol 53 (11) ◽  
pp. 261-268 ◽  
Author(s):  
I. Moreno-Andrade ◽  
G. Buitrón ◽  
J. Pérez ◽  
M.J. Betancur ◽  
J.A. Moreno

This work presents the results of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, high concentrations of 4-chlorophenol used as toxic compound model. The influent is fed into the reactor in such a way as to obtain the maximal degradation rate, thus avoiding the inhibition of the microorganisms. The optimal strategy was able to manage increments of toxic concentrations in the influent up to 7,000 mg 4CP/L without any problem. It was shown not only that higher concentrations of toxic could be treated, but also that a reduction in degradation time (around 52%) and in the supplied air volume was obtained.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 163-170 ◽  
Author(s):  
A. Vargas ◽  
G. Soto ◽  
J. Moreno ◽  
G. Buitrón

The present study implements a time-optimal control strategy for a discontinuous aerobic bioreactor, used to treat highly concentrated toxic wastewater present in some effluents of the chemical and petrochemical industries, using respirometric techniques. The control strategy regulates the feed rate to maintain a constant optimal substrate concentration in the reactor, which in turn minimizes the reaction time. Since this control requires on-line knowledge of unmeasurable variables, an Extended Kalman Filter is used as a nonlinear observer. The experimental setup was a 7 litre laboratory bioreactor used to treat synthetic wastewater with high concentrations of 4-chlorophenol. The controller consisted of a personal computer with data acquisition hardware and real-time software tools, peristaltic pumps and an electronic oxygen meter. Three experiments were performed: one to obtain parameters and calibrate the observer, another one to validate the time-optimal strategy and a final one to evaluate theperformance of a fully automated time-optimal operation. When well calibrated, the observer provided good enough estimates and the controller worked as expected, reducing reaction time and increasing the overall efficiency of the bioreactor, when compared with the usual SBR-type operation.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 273-280 ◽  
Author(s):  
G. Buitrón ◽  
I. Moreno-Andrade ◽  
J. Pérez ◽  
M.J. Betancur ◽  
J.A. Moreno

This work presents the results of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a mixture of municipal wastewater and different concentrations of phenol when used as a toxic compound model. The influent is fed into the reactor in such a way to obtain the maximal degradation rate avoiding the inhibition of the microorganisms. Such an optimal strategy was able to manage increments of phenol concentrations in the influent up to 7000 mg/L without any problem. It was shown that the optimally controlled influent flow rate strategy is a good and reliable tool when a discontinuous reactor is applied to degrade an industrial wastewater.


2018 ◽  
Vol 789 ◽  
pp. 59-63
Author(s):  
Susmardi Masti Casoni ◽  
Chandra Wahyu Purnomo ◽  
Muslikhin Hidayat

The high organic material contained in wastewater released into the environment asresults of various sources of human activities, such as phosphorus, can cause eutrophication. Thestruvite crystallization in an aerated fluidized bed reactor is one of the methods which able toimprove the efficiency of phosphorus removal. In this study, a mixture of synthetic wastewaters andthe MgCl2 solution was treated in a fluidized bed reactor equipped with aeration to produce thestruvite which can be utilized as a slow release fertilizer. Subsequently, the effect of aeration atdifference influent flow rate was investigated to correlate with the changing of phosphorusconcentration in the reactor effluent. The experiments were conducted for 240 minutes with thevariation of aeration are 0.5 L/min to 1.5 L/min; variation of influent flow rate of syntheticwastewater is 150 ml/min to 350 ml/min, with a constant influent flow rate of MgCl2 solution is 50ml/min. These solutions were maintained at the condition of pH 9. The results showed that theoptimal efficiency of phosphor removal which accounted for 82.5% occurred when the aeration rateof 1.5 L/min in the influent flow rate of 150 ml/min. From these findings, it is revealed that theefficiency of P removal in wastewater is obtained by a crystallization process which utilizing anaerated fluidized bed reactor and by increasing the aeration rate and the reactants contact time.


2009 ◽  
Vol 60 (4) ◽  
pp. 879-888 ◽  
Author(s):  
H. Kim ◽  
Y. Kim ◽  
J. Cha ◽  
K. Min ◽  
J. Gee ◽  
...  

A model-based evaluation of operation conditions and control strategies was conducted for phosphorus removal in a full-scale Advanced Phase Isolation Ditch (APID) process. The APID process is an alternating type and does not have a separated anaerobic reactor. We suggested that it would be a suitable operational option for robust phosphorus removal by having a different input point for the influent and return sludge flow at specific modes. For evaluation of control strategies, three cases of influent disturbance were assumed, and five manipulated variables were selected for controlling the cases of disturbance. In the case of an increased influent flow rate, a combination of four manipulated variables is proposed through our simulation results as the best control strategy. The optimal kLa value was found to be 250/d when pollutants loading kept increasing without variations in the flow rate. When both the pollutants loading and the influent flow rates were increased simultaneously, the robust control strategy is to combine the return sludge inflow point, the exclusive operation modes which have a relatively long hydraulic retention time (HRT), operation period of 30 minutes, and the increase of the return sludge flow rate in proportion to the influent flow rate added to 300/d of kLa value.


1970 ◽  
Vol 64 (1) ◽  
pp. 150-158 ◽  
Author(s):  
S. Pors Nielsen

ABSTRACT Intravenous infusion of isotonic magnesium chloride into young cats with a resultant mean plasma magnesium concentration of 7.7 meq./100 g protein was followed by a significant lowering of the plasma calcium concentration in 90 minutes. The rate of decrease of plasma calcium is consistent with the hypothesis that calcitonin is released by magnesium in high concentrations. There was no decrease in the plasma calcium concentration in cats of the same weight thyroparathyroidectomized 60 min before an identical magnesium chloride infusion or an infusion of isotonic sodium chloride at the same flow rate. The hypercalciuric effect of magnesium could not account for the hypocalcaemic effect of magnesium. Plasma magnesium concentration during magnesium infusion into cats with an intact thyroid-parathyroid gland complex was slightly, but not significantly higher than in acutely thyroparathyroidectomized cats.


2010 ◽  
Vol 61 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Johnsely S. Cyrus ◽  
G. B. Reddy

Constructed wetland systems have gained attention as attractive solutions for wastewater treatment. Wetlands are not efficient to treat wastewater with high concentrations of phosphorus (P). In order to remove high soluble P loads by wetland, sorbent beds can be added prior to the discharge of wastewater into wetlands. Sorption by sorbent materials is identified as a method for trapping excess P in wastewaters. In the present investigation, shale has been identified as a sorbent material for removal of phosphate (PO4-P) due to the cost effectiveness, stability and possibility of regeneration. The study focuses on the removal of PO4-P from wastewater using shale and the feasibility of using the P-sorbed material as slow-release fertilizer. Phosphorus sorption experiments were conducted by using shale (2 mm and 2–4.7 mm). Results indicate that Shale I (particle size = 2 mm) showed the highest sorption of PO4-P (500 ± 44 mg kg−1). Breakthrough point was reached within 10 h in columns with flow rates of 2 and 3 ml min−1. Lower flow rate of 1 ml min−1 showed an average residence time of about 2 h while columns with a higher flow rate of 3 ml min−1 showed a residence time of about 40 minutes. Variation in flow rate did not influence the desorption process. Since very low concentrations of PO4-P are released, Shale saturated with PO4-P may be used as a slow nutrient release source of P or as a soil amendment. The sorbent can also be regenerated by removing the sorbed PO4-P by using 0.1 N HCl.


Sign in / Sign up

Export Citation Format

Share Document