Intelligent sequencing batch reactor control from theory, through modelling, to full-scale application

2005 ◽  
Vol 51 (9) ◽  
pp. 167-173 ◽  
Author(s):  
Andrew Shaw ◽  
John Watts ◽  
Andrew W. Fairey ◽  
Marty Iler

Sequencing batch reactors (SBR) can provide a high level of treatment and have potentially great flexibility in their modes of operation enabling the operator - in principle - to adjust the way the SBR operates to provide the desired treatment goal. In practice, however, SBRs are most often operated using simple phases with fixed time intervals. Advanced control techniques can be used to enable an SBR to realize its full treatment potential and maximize its capacity and this paper describes several online measurements and control approaches that can be used to do so. A case study is presented that demonstrates how first a process model was used to test three control options for the Daniel Island wastewater treatment facility in South Carolina, USA, followed by field testing of two approaches and the subsequent implementation of one of these to enable the plant to maximize its treatment capacity.

2004 ◽  
Vol 50 (10) ◽  
pp. 115-120 ◽  
Author(s):  
M. Peters ◽  
M. Newland ◽  
T. Seviour ◽  
T. Broom ◽  
T. Bridle

The efficacy of sequencing batch reactors (SBRs) to provide high levels of biological nutrient removal has been extensively demonstrated around the world. Environmental Solutions International (ESI) has now constructed over 20 full-scale SBR plants and has confirmed that nutrient removal is enhanced via the process of simultaneous nitrification and denitrification. Over 18 months of operational data from two plants, operating in distinctly different catchments, processing an average of between 2,000 and 2,500 m3/d of wastewater, has clearly shown the efficacy and robustness of the ESI SBR-BNR process. Median effluent total nitrogen and total phosphorus values of 3 mg/L and <0.6 mg/L, respectively, were demonstrated over the 18-month period. This high level of nutrient removal is attributed to the design of the bio-selector which maximises carbon storage for the subsequent denitrification reactions, the effective aeration control which ensures no over-aeration during the air-on cycle as well as the level of operational control provided at these two plants.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 125-133 ◽  
Author(s):  
M. Torregrossa ◽  
G. Di Bella ◽  
G. Viviani ◽  
A. Gnoffo

Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organics removal. COD and BOD removal efficiencies were respectively, 93 and 94%; on the contrary, N-removal efficiency was extremely low (5%–45%). The granules dimensions increased during the whole experimentation; change of reactor configuration contributed to further improve this aspect. The experimental work confirmed the essential role of hydraulic settling time in the formation of aerobic granules and in the sludge settleability and the need to find an optimum between granule size and oxygen supply to achieve good N-removal efficiency.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2523-2526 ◽  
Author(s):  
K. L. Norcross

Sequencing Batch Reactors (SBR's) offer many advantages and few disadvantages to the wastewater treatment process selection. Due to the relatively recent surge of interest in SBR's, few plants have been on-line long enough for Engineers to have developed a thorough understanding of all design aspects and considerations. The author has been involved directly in the design, equipment supply, start-up and operation of almost 60 SBR's of all sizes. About two thirds of the installations are municipal and one-third of these installations are industrial sites involving wastes from food processors, dairies, distilleries, petro-chemical manufacturers, landfill leachate, tanneries, Government munition plants and pharmaceutical manufacturers. The control of filamentous bulking has also been excellent with SBR's. This paper will consider the mechanical, process and control aspects for design of an SBR. The mechanical aspects will include HRT and basin sizing, selection of aeration equipment and effluent decanters. The process parameters discussed will include loading rates and F:M considerations, MLSS concentration, oxygen requirements and D.O. uptake rate, flow proportional aeration, the benefits of an anoxic fill cycle, and finally, nutrient removal. Control considerations are briefly discussed.


1997 ◽  
Vol 35 (1) ◽  
pp. 105-112 ◽  
Author(s):  
L. Novák ◽  
M. C. Goronszy ◽  
J. Wanner

Sequencing batch reactors (SBRs) can be successfully operated for both carbon and nutrient removal, including nitrogen and phosphorus. The major elements of design that accomplish population dynamics control to prevent filamentous sludge bulking, cycle time, oxygen supply, biological nitrification, denitrification, phosphorus removal and solids-liquid separation need to be set in such a way that sufficiently optimal conditions are provided to permit the reactions and processes to take place. SBR processing using cyclic activated sludge technology employs biological selectors in the inlet part of the SBR system and a minor sludge recycle stream to ensure influent wastewater is mixed with activated sludge flocs to create favourable conditions for kinetic and metabolic selection of microorganisms producing floccules. Reaction volume, in addition to the designated bottom water level volume, is variable through time fed-batch reactor mode of operation. A mathematical model that describes volume changes and simultaneously the biodegradation kinetics has been developed. The model describes theoretical behaviour of selected parameters of volume, suspended solids concentration, OUR, ammonia and nitrate nitrogen in the selector compartment and the main aerated basin in ideally mixed and filled reactors of the cyclic system during the phase of mixed-fill (selector) and aerated and non-aerated fill (main aeration reactor basin).


2014 ◽  
Vol 69 (10) ◽  
pp. 1984-1995 ◽  
Author(s):  
Lana Mallouhi ◽  
Ute Austermann-Haun

Sequencing batch reactors (SBRs) are known for high process stability and usually have a good sludge volume index (SVI). Nevertheless, in many SBRs in Germany for municipal wastewater treatment, scum and foam problems can occur, and SVI can be larger than 200 mL/g. The microscopic investigations of the activated sludge from plants with nitrogen and phosphorus removal have shown that Microthrix parvicella is dominant in the activated sludge in most of them. Studies showed that the optimum growth of M. parvicella is performed at a high sludge age (>20 d) and low sludge load in the range of 0.05–0.2 kg of biochemical oxygen demand per kg of total suspended solids per day (kg BOD5/(TSS·d)). The investigations in 13 SBRs with simultaneous aerobic sludge stabilization (most of them are operated with a system called differential internal cycle strategy sequential batch reactor (DIC-SBR)) show that M. parvicella is able to grow in sludge loads less than 0.05 kg BOD5/(kg TSS·d) as well. To optimize the operation of those SBRs, long cycle times (8–12 h) and dosing of iron salts to eliminate long-chain fatty acids are both recommended. This leads to better SVI and keeps M. parvicella at a low frequency.


2012 ◽  
Vol 66 (8) ◽  
pp. 1722-1727 ◽  
Author(s):  
Lin Liu ◽  
Da-Wen Gao ◽  
Hong Liang

We have investigated the effect of sludge discharge location on the steady-state aerobic granules in sequencing batch reactors (SBRs). Two SBRs were operated concurrently with the same sludge retention time using sludge discharge ports at: (a) the reactor bottom in R1; and (b) the reactor middle-lower level in R2. Results indicate that both reactors could maintain sludge granulation and stable operation, but the two different sludge discharge methods resulted in significantly different aerobic granule characteristics. Over 30 days, the chemical oxygen demand (COD) removal of the two reactors was maintained at similar levels (above 96%), and typical bioflocs were not observed. The average aerobic granule size in R2 was twice that in R1, as settling velocity increased in proportion to size increment. Meanwhile, the production yields of polysaccharide and protein content in R2 were always higher than those in R1. However, due to mass transfer limitations and the presence of anaerobes in the aerobic granule cores, larger granules had a tendency to disintegrate in R2. Thus, we conclude that a sludge discharge port situated at the reactor bottom is beneficial for aerobic granule stability, and enhances the potential for long-term aerobic granule SBR operation.


Author(s):  
Hongwei Sun ◽  
Chenjian Cai ◽  
Jixue Chen ◽  
Chunyu Liu ◽  
Guangjie Wang ◽  
...  

Abstract In order to investigate the effect of temperatures and operating modes on extracellular polymeric substances (EPS) contents, three sequencing batch reactors (SBRs) were operated at temperatures of 15, 25, and 35 °C (R15 °C, R25 °C, and R35 °C, respectively), with two SBRs operated under alternating anoxic/oxic conditions (RA/O and RO/A, respectively). Results showed that higher contents of tightly bound EPS (TB-EPS) and total EPS appeared in R15 °C, while loosely bound EPS (LB-EPS) dominated in R35 °C. In all three kinds of EPS (LB-EPS, TB-EPS and total EPS) assessed, protein was the main component in R15 °C and R25 °C, while polysaccharides dominated in R35 °C. Moreover, compared with RO/A, RA/O was favorable for the production of the three kinds of EPS. Furthermore, three kinds of EPS and their components were augmented during the nitrification process, while they declined during the denitrification process under all conditions except for R35 °C.


2006 ◽  
Vol 54 (2) ◽  
pp. 199-206 ◽  
Author(s):  
A. Benítez ◽  
A. Ferrari ◽  
S. Gutierrez ◽  
R. Canetti ◽  
A. Cabezas ◽  
...  

Wastewater from dairy industries, characterized by its high COD content and relative high COD/TKN ratio, requires post-treatment after anaerobic treatment to complete the removal of organic matter and nutrients. Due to its simplicity, robustness and low maintenance costs, sequencing batch reactors (SBR) result in an attractive system, especially in case of small dairy industries in order to comply with the emission standards. The goal of this work was to determine the operational parameters, optimize the performance, and study the stability of the microbial population of a SBR system for the post-treatment of an anaerobic pond effluent. High and stable removal of COD and TKN was achieved in the reactor, which can easily be set up in dairy industries. An active nitrifying population was selected during reactor operation and maintained relatively stable, while the heterotrophic (total and denitrifying) communities were more unstable and susceptible to changes in the operating conditions.


Sign in / Sign up

Export Citation Format

Share Document