Copper removal from sludge permeate with ultrafiltration membranes using zeolite, bentonite and vermiculite as adsorbents

2010 ◽  
Vol 61 (3) ◽  
pp. 581-589 ◽  
Author(s):  
S. Malamis ◽  
E. Katsou ◽  
M. Stylianou ◽  
K. J. Haralambous ◽  
M. Loizidou

The aim of this work is to examine copper removal from sludge permeate with the use of low-cost minerals of Mediterranean origin combined with ultrafiltration membranes. The minerals used were zeolite (clinoptilolite), bentonite and vermiculite. Activated sludge was enriched with 0.01 N (317.7 ppm) of Cu(II). Fixed concentrations of minerals were added to sludge and the pH value was adjusted at 5.5. The mixture was agitated for 2 hours at 800 rpm at room temperature and was then filtered through a batch ultrafiltration system for 1 hour. This experiment was repeated, for comparison purposes, with sludge enriched with 0.01 N of Cu(II) with no mineral addition. The results showed that ultrafiltration membranes with no mineral addition were able to remove a significant amount of copper with removal efficiencies ranging from 59.4–78.3%. The addition of 10 g/l and 20 g/l of bentonite combined with ultrafiltration membranes resulted in removal efficiencies of 94.9% and 99.4% respectively and that of 10 g/l and 20 g/l of vermiculite in removal efficiencies of 93.8% and 96.8%, respectively. The ion exchange capacity of minerals followed the order bentonite > vermiculite > zeolite. Furthermore, membrane fouling was investigated. The addition of zeolite and bentonite reduced membrane fouling, while the addition of vermiculite did not impact on fouling. The use of low-cost minerals in combination with ultrafiltration membranes can be employed to treat industrial wastewater, resulting in a final effluent with very low copper concentrations.

1997 ◽  
Vol 35 (7) ◽  
pp. 89-95 ◽  
Author(s):  
Aloysius U. Baes ◽  
Tetsuji Okuda ◽  
Wataru Nishijima ◽  
Eiji Shoto ◽  
Mitsumasa Okada

The adsorption of nitrate, chromium (VI), arsenic (V) and selenium (VI) anions in an amine modified coconut coir (MCC-AE : with secondary and tertiary amine functionality) were studied to determine the capability of this easily prepared and low-cost material in removing typical groundwater anion contaminants. Batch adsorption-ion exchange experiments were conducted using 200 mg MCC-AE, initially containing chloride as the resident anion, and 50 ml of different anion-containing water of varying concentrations. It is presumed, at this low pH, that only SeO42− remained as a divalent anion, while monovalent species H2AsO4− and HCrO4− predominated in their respective exchanging ion solutions. The adsorption data were fitted using the Freundlich equation and maximum adsorption for each anion was estimated using their respective Freundlich equation constants. MCC-AE exhibited preference for divalent Cr (VI) and Se (VI) anions compared with the Cl− resident ion. Maximum As (V) adsorption was 0.086 mmol/g, while maximum adsorption of Cr (VI), NO3− and Se (VI) anions was 0.327 mmol/g, 0.459 mmol/g, and 0.222 mmol/g, respectively. The ion exchange capacity of MCC-AE is estimated, based on its exchange capacity for nitrate, to be within 0.46 mmol of positive charges per gram. Similar adsorption experiments were conducted for comparison using commercial chloride-form Amberlite IRA-900 strong base (quaternary amine functionality) anion exchanger, with an exchange capacity of 4.2 meq/g. Maximum adsorption of the different ions in IRA-900 was about 3 times higher for NO3−, 9 times higher for Se (VI), 10 times higher for As (V) and 9 times higher for Cr (VI), than that in MCC-AE. Differences in the ion exchange behavior of MCC-AE and IRA-900 were probably due to the different amine functionalities in the two exchangers. The results suggest that MCC-AE may be used as a low-cost alternative adsorbent/ion exchanger for treatment of anion contaminants in groundwater.


Author(s):  
Enas A. Almadani ◽  
Farah Haron ◽  
Dala M Ibrahim

Clay and clay modified catalysts have been widely used to catalyze various types of organic reactions such as esterification reactions, isomerization reactions, cyclization reactions, oxidation of alcohols, dehydrogenation, epoxidation and several more. Due to its favorable properties such as low cost, thermal stability, selectivity, large surface area, ion exchange capacity, easily separated, as well as environmental friendly. This paper reviewed some recent studies on the using of clay and modified clay as catalyst for the production of esters.


2019 ◽  
Vol 961 ◽  
pp. 23-29
Author(s):  
Nur Hidayati ◽  
Muhammad Mujiburohman ◽  
Hamid Abdillah ◽  
Herry Purnama ◽  
Arnaldi Dwilaksita ◽  
...  

The low cost of ABS polymer and natural polymer chitosan offer attractive chemical and physical properties for direct methanol fuel cells (DMFC). In this contribution, investigation of blend membrane made of ABS and chitosan, and their characterization for water uptake, swelling degree and ion exchange capacity (IEC) and methanol crossover are reported. This membrane was also assessed for its intermolecular interactions and thermal stability using FTIR and TGA compared to the pristine membrane. The water absorption and IEC values were affected by membrane network structure. The polymer blend had better thermal stability and a reduction of methanol permeability, this indicated the viability of utilization these materials as polymer electrolyte membrane in DMFC


2015 ◽  
Vol 773-774 ◽  
pp. 1350-1354
Author(s):  
Rafidah Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Siti Zahirah Haron

Excessive nitrogen in domestic wastewater discharge accelerates eutrophication in an aquatic ecosystem. To treat wastewater high in nitrogen conventionally are more expensive, complex and generate high amount of sludge. In line with this situation, rock filters (RF) emerged as one of attractive natural wastewater treatment method to treat wastewater high in nutrient because this filter system is easier to maintain, using low-cost filter media, and environmentally-friendly technology. However, studies on the removal of nitrogen in the system are still limited due to nitrification study under warm climate. Thus, an aerated rock filter system has been designed in this study to remove ammonia nitrogen from domestic wastewater using the recommended hydraulic loading rate in warm climate condition. The laboratory aerated rock filter system has been in operated for 2 months with 5 weeks of sampling. The filter influent and effluent samples have been collected and analyzed twice a week for Total Kjeldhal Nitrogen (TKN), ammonia nitrogen (AN), nitrates ,pH, temperature, DO and alkalinity to monitor the filter performance in removing nitrogen. Results from the laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of ammonia nitrogen was ranged from 66.05 % to 91.30 % and the removal percentage of TKN was ranged from 63.23 % to 87.68 %. The temperature was in the range of 25°C to 27.5°C, pH value was in the range of 6.34 to 8.04, DO was from 6.64 mg/L to 7.75 mg/L, and the alkalinity was from 15 to 110 as mg /L CaCO3. Therefore, from this laboratory experiment it can be concluded that aerated rock filter system has high potential in removing AN and TKN. The system also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2011 ◽  
Vol 64 (7) ◽  
pp. 1398-1405 ◽  
Author(s):  
Abdullah Al-Amri ◽  
Mohd Razman Salim ◽  
Azmi Aris

A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m−2 h−1 (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH3-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH3-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7–8.3.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
S. Arasaretnam ◽  
U. P. Dilshani Jayarathna

Two formaldehyde-based terpolymeric resins (anthranilic acid-catechol-formaldehyde (ACF) and salicylic acid-catechol-formaldehyde (SCF)) have been synthesized by condensing anthranilic acid with catechol and salicylic acid with catechol at 80 ± 5°C using dimethylformamide as a solvent. The resins were characterized by spectral analysis using Fourier-transform infrared (FTIR) spectroscopy. The physical-chemical properties of the resins have been studied. The exchange behavior of various metal ions, namely, Cd2+, Cr3+, Ca2+, and Mg2+, towards the synthesized resins has been studied depending on contact time and pH. Chelating properties of two resins were pH dependent, and with an increase in pH value from 1 to 5, the exchange capacity of metal ions was increased. The increasing rate of ion-exchange capacity was greater in ACF than that in SCF. Cd2+ showed higher rate of exchange at different time intervals in both cases, ACF and SCF. Cr3+ had higher exchange capacity with pH variation in both resins.


2001 ◽  
Vol 43 (11) ◽  
pp. 59-66 ◽  
Author(s):  
J. C. Lee ◽  
J. S. Kim ◽  
I. J. Kang ◽  
M. H. Cho ◽  
P. K. Park ◽  
...  

In this study, alum and natural zeolite were added to a submerged membrane bioreactor (MBR) not only to reduce membrane fouling but also to increase the removal of nitrogen and phosphorus. Alum addition reduced significantly the rising rate of suction pressure and also resulted in stable and better COD removal. Although phosphorus removal was more than 90% by chemical precipitation, nitrification inhibition was observed. With the addition of natural zeolite, membrane permeability was greatly enhanced by the formation of rigid floc that had lower specific resistance than that of the control activated sludge floc. In particular, the nitrification efficiency was over 95% even at N-shock loading due to the ion-exchange capacity of zeolite. The mechanisms for improved membrane permeability through alum or zeolite addition were discussed in detail.


2019 ◽  
Vol 37 (8) ◽  
pp. 826-832 ◽  
Author(s):  
T Částková ◽  
A Hanč

The main by-product of wine-making is grape marc. With proper treatment, grape marc may return to the vineyard as a fertiliser. This study deals with the vermicomposting of grape marc in a continuous feeding system in outdoor conditions for more than 12 months. The N-NH4+, dissolved organic carbon (DOC), and N-NH4+/N-NO3- contents were greater in the top layers. The pH value was about 8 in all the layers. The electrical conductivity was the greatest in the bottom layer. The ion-exchange capacity did not modify significantly during vermicomposting. The microbial biomass was the greatest in the upper layer, as well as the number and the biomass of the earthworms. The process of vermicomposting seems to be an ideal way of processing residues from the winemaking industry. This vermicompost has very good properties for use as a fertiliser, and for returning the nutrients and organic matter to the soil, for example, in a vineyard.


2011 ◽  
Vol 57 (No. 5) ◽  
pp. 193-200 ◽  
Author(s):  
L. Kolář ◽  
V. Vaněk ◽  
S. Kužel ◽  
J. Peterka ◽  
J. Borová-Batt ◽  
...  

The labile fraction of soil organic carbon (SOC) in terms of its quantity is a sensitive but dynamic indicator of the reactive agent in soils. If it is to be considered as a feature of soil quality, the value of its quantity should be completed by data on its quality. It can be expressed by the value of the rate constant of microbial oxidation k<sub>bio</sub> of this fraction or by data on chemical stability during hydrolysis or oxidation. If the quality of SOC labile fraction is not determined, at least the ratio of C<sub>MIC</sub>: C<sub>org</sub> should be given. The adjustment of soil acidity increases the microbial activity of soils, therefore the quantity of SOC labile fraction decreases and at the same time kbio decreases proportionately to the increasing stability of soil organic matters. During a 5-year period after the liming the soils acidify again and this process passes the faster the lesser their ion exchange capacity and buffering are. The quantity of the labile fraction of SOC raises again, its stability decreases and k<sub>bio</sub> raises again. The conversion pH value has secondary relevance.


2011 ◽  
Vol 11 (4) ◽  
pp. 481-489
Author(s):  
S. Krause ◽  
A. Obermayer

The public drinking water supply of southern Germany is characterized by a rather decentralized network. Due to the hydrogeological setting in these parts of Germany many of the small water works with an average capacity of 50 m3/h have to treat raw water extracted from karstic or cliffy aquifers. These raw waters tend to be contaminated with particles and pathogens acquired during snowmelt or after strong rainfalls. In the last decade ultrafiltration has become the technology of choice for the removal of the aforementioned contaminants. Flux decline caused by unanticipated membrane fouling is the main limitation for the application of ultrafiltration membranes. This paper describes how membrane fouling phenomena can be predicted by using a statistical approach based on data from large scale filtration systems in combination with field and lab experiments on raw water quality and membrane performance. The data defines water quality and respective fouling phenomena both in technical scale filtration plants and in lab experiments of eleven different raw waters. The method described here is more economically feasible for small water works when compared to typical pilot experiments that are used for high capacity water works.


Sign in / Sign up

Export Citation Format

Share Document