Distribution and characterization of anammox in a swine wastewater activated sludge facility

2013 ◽  
Vol 67 (10) ◽  
pp. 2330-2336 ◽  
Author(s):  
Takao Yamagishi ◽  
Mio Takeuchi ◽  
Yuichiro Wakiya ◽  
Miyoko Waki

Anaerobic ammonium oxidation (anammox) is a novel biological nitrogen removal process that oxidizes NH4+ to N2 with NO2− as an electron acceptor. The purpose of this study was to examine the potential activity and characteristics of anammox in a conventional swine wastewater treatment facility, which uses an activated sludge system consisting of three cascade aeration tanks equipped with ceramic support material. Anammox activity was estimated by a 15N tracer assay method and was detected in all the sludge and biofilm samples in each aeration tank. Biofilm taken from the third aeration tank, in which the dissolved oxygen concentration was 7.5 mg/L and the wastewater included a high concentration of NO3−, showed by far the highest anammox activity. A clone library analysis showed the existence of anammox bacteria closely related to ‘Candidatus Jettenia asiatica’ and ‘Ca. Brocadia caroliniensis’. The optimum conditions for anammox activity were a pH of 6.7–7.2, a temperature of 35 °C, a NO2− concentration of 10 mmol/L or less, and an NH4+ concentration of 32 mmol/L or less.

2013 ◽  
Vol 62 (2) ◽  
Author(s):  
Norjan Yusof ◽  
Hanisom Abdullah ◽  
Syakirah Samsudin ◽  
Mohd Ali Hassan

Anaerobic ammonium oxidation (anammox) bacteria enrichment was explored for the potential application of ammonium rich wastewater removal. Samples of sludge from mature and young landfill leachate treatment plants were screened and used as inocula for anammox enrichment cultures. Enrichments were monitored for N-NH3, N-NO2- and N-NO3- to detect anammox potential activity. Six of the twelve enrichment cultures showed anammox activity after more than five months of enrichment period. All enrichment cultures that gave positive results were obtained from bottom part of sequencing batch reactor (SBR) lagoon indicating localization of anammox bacteria in anaerobic condition.  Polymerase Chain Reaction (PCR) with specific primers targeting anammox and planctomycete were able to amplify the 16S rRNA sequence for anammox bacteria under PCR optimum condition. However, only three of six positive samples were successfully sequenced. DNA sequence analysis using NCBI (BLAST) and RDP showed that the anammox bacterial sequences of the investigated samples were identified as Candidatus Kuenenia stuttgartiensis with similarity of 100% (NCBI) and 99.3% (RDP).


2012 ◽  
Vol 66 (7) ◽  
pp. 1519-1526 ◽  
Author(s):  
T. Lotti ◽  
M. Cordola ◽  
R. Kleerebezem ◽  
S. Caffaz ◽  
C. Lubello ◽  
...  

The feasibility of anaerobic ammonium oxidation (anammox) process to treat wastewaters containing antibiotics and heavy metals (such as the liquid fraction of the anaerobically digested swine manure) was studied in this work. The specific anammox activity (SAA) was evaluated by means of manometric batch tests. The effects of oxytetracycline, sulfathiazole, copper and zinc were studied. The experimental data of the short-term assays were fitted with an inhibition model to identify the half maximal inhibitory concentration (IC50). After 24 h exposures, IC50-values equal to 1.9, 3.9, 650 and 1,100 mg L−1 were identified for copper, zinc, sulfathiazole and tetracycline respectively. The effect of prolonged exposure (14 days) to oxytetracycline and sulfathiazole was studied by means of repeated batch-assays. Anabolism and catabolism reactions were active during the inhibition tests indicating that anammox bacteria could grow even in the extreme conditions tested. Considering the average concentrations expected in swine wastewaters, the inhibitors studied do not seem to represent a problem for the application of the anammox process. However, in order to verify the effect of these compounds on the growth of anammox bacteria, continuous culture experiments could be conducted.


2010 ◽  
Vol 101 (8) ◽  
pp. 2685-2690 ◽  
Author(s):  
Miyoko Waki ◽  
Tomoko Yasuda ◽  
Kazuyoshi Suzuki ◽  
Takahiro Sakai ◽  
Naoto Suzuki ◽  
...  

Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1706-1713 ◽  
Author(s):  
Mamoru Oshiki ◽  
Masaki Shimokawa ◽  
Naoki Fujii ◽  
Hisashi Satoh ◽  
Satoshi Okabe

The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3 day−1. The anammox bacteria were identified as representing ‘Candidatus Brocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μmax) was 0.0041 h−1, corresponding to a doubling time of 7 days. The half-saturation constants (K s) for ammonium and nitrite of ‘Ca. B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘Candidatus Brocadia anammoxidans’ and ‘Candidatus Kuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (mol NH 4 + )−1, respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.


2018 ◽  
Vol 44 ◽  
pp. 00008 ◽  
Author(s):  
Anna Banach ◽  
Aneta Pudlo ◽  
Aleksandra Ziembińska-Buczyńska

Anaerobic ammonium oxidation (anammox) is a process of ammonium and nitrite conversion into nitrogen gas. Nowadays, anammox is applied into many wastewater treatment plants worldwide. However, anammox bacteria are characterized by a slow growth rate, which may cause problems in maintaining the biomass in the system. The promising technique which can help to maintain the biomass in the reactor and effectively prevent loss of anammox bacteria from a system is immobilization. Selection and optimization of the appropriate immobilization technique for investigated biomass is crucial for conducting an effective process. One of the ways for bacteria immobilization is gel entrapment. The main goal of the study was to test sodium alginate as an immobilization medium for anammox biomass. In the present study procedure of immobilization in sodium alginate was optimised, then the mechanical and chemical properties of the obtained pellets were investigated. Series of batch experiments revealed that immobilized anammox biomass was able to remove ammonia and nitrite nitrogen effectively. The calculated specific anammox activity (SAA) for immobilized anammox biomass was 0.18 g N·gVSS-1·d-1, while for non-immobilized biomass was 0.36 g N·gVSS-1·d-1.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Ivar Zekker ◽  
Oleg Artemchuk ◽  
Ergo Rikmann ◽  
Kelvin Ohimai ◽  
Gourav Dhar Bhowmick ◽  
...  

Biological nutrient removal from wastewater to reach acceptable levels is needed to protect water resources and avoid eutrophication. The start-up of an anaerobic ammonium oxidation (anammox) process from scratch was investigated in a 20 L sequence batch reactor (SBR) inoculated with a mixture of aerobic and anaerobic sludge at 30 ± 0.5 °C with a hydraulic retention time (HRT) of 2–3 days. The use of NH4Cl, NaNO2, and reject water as nitrogen sources created different salinity periods, in which the anammox process performance was assessed: low (<0.2 g of Cl−/L), high (18.2 g of Cl−/L), or optimum salinity (0.5–2 g of Cl−/L). Reject water feeding gave the optimum salinity, with an average nitrogen removal efficiency of 80%, and a TNRR of 0.08 kg N/m3/d being achieved after 193 days. The main aim was to show the effect of a hydrazine addition on the specific anammox activity (SAA) and denitrification activity in the start-up process to boost the autotrophic nitrogen removal from scratch. The effect of the anammox intermediate hydrazine addition was tested to assess its concentration effect (range of 2–12.5 mg of N2H4/L) on diminishing denitrifier activity and accelerating anammox activity at the same time. Heterotrophic denitrifiers’ activity was diminished by all hydrazine additions compared to the control; 5 mg of N2H4/L added enhanced SAA compared to the control, achieving an SAA of 0.72 (±0.01) mg N/g MLSS/h, while the test with 7.5 mg of N2H4/L reached the highest overall SAA of 0.98 (±0.09) mg N g/MLSS/h. The addition of trace amounts of hydrazine for 6 h was also able to enhance SAA after inhibition by organic carbon source sodium acetate addition at a high C/N ratio of 10/1. The start-up of anammox bacteria from the aerobic–anaerobic suspended biomass was successful, with hydrazine significantly accelerating anammox activity and decreasing denitrifier activity, making the method applicable for side-stream as well as mainstream treatment.


2011 ◽  
Vol 64 (7) ◽  
pp. 1428-1434 ◽  
Author(s):  
J. C. Araujo ◽  
A. C. Campos ◽  
M. M. Correa ◽  
E. C. Silva ◽  
M. H. Matté ◽  
...  

A sustainable option for nitrogen removal is the anaerobic ammonium-oxidizing (anammox) process in which ammonium is oxidized to nitrogen gas with nitrite as electron acceptor. Application of this process, however, is limited by the availability of anammox biomass. In this study, two Brocadia-like anammox phylotypes were successfully enriched, detected and identified from an activated sludge taken from a domestic wastewater treatment plant (Minas Gerais, Brazil) employing a Sequencing Batch Reactor (SBR). The dominant phylotype was closely related to ‘Candidatus Brocadia sinica’, but one clone seemed to represent a novel species for which we propose the name ‘Candidatus Brocadia brasiliensis’. Based on Fluorescence in situ hybridization (FISH) analysis, this enrichment led to a relative population size of 52.7% (±15.6) anammox bacteria after 6 months of cultivation. The cultivation process can be divided into three phases: phase 1 (approximately 25 days) was characterized by heterotrophic denitrification metabolism, phase 2 was the propagation phase and phase 3 (from the 87th day onwards), in which significant anammox activity was detected. A long-term performance of the SBR showed a near perfect removal of nitrite based on the influent NO2−-N concentration of 61–95 mg L−1. The average ammonia removal efficiency was 90% with the influent NH4+-N concentration of 55–82 mg L−1. Therefore, anammox cultivation and enrichment from activated sludge was possible under a controlled environment within 3 months.


2008 ◽  
Vol 58 (5) ◽  
pp. 1121-1128 ◽  
Author(s):  
Y. Date ◽  
K. Isaka ◽  
T. Sumino ◽  
S. Tsuneda ◽  
Y. Inamori

Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway in the biological nitrogen cycle and a new cost-effective way to remove ammonium from wastewater. We have so far developed new immobilization technique that anammox bacteria entrapped in polyethylene glycol (PEG) gel carrier. However, fate and behavior of anammox bacteria in a gel carrier is not well understood. In the present study, we focused on the population changes of anammox bacteria in a gel carrier. Three specific primer sets were designed for real-time PCR. For quantification of anammox bacteria in a gel carrier, real-time PCR was performed. The anammox bacteria related to HPT-WU-N03 clone were increased the rate in anammox population, and found to be a major population of anammox bacteria in a gel carrier. Furthermore, from the results of nitrogen removal performance and quantification of anammox bacteria, the correlation coefficient between copy numbers of anammox bacteria and nitrogen conversion rate was calculated as 0.947 in total anammox population. This is the first report that population changes of anammox bacteria immobilized in a gel carrier were evaluated.


2011 ◽  
Vol 31 (6) ◽  
pp. 1170-1178 ◽  
Author(s):  
Caroline G Casagrande ◽  
Airton Kunz ◽  
Hugo M Soares ◽  
Marina C. de Prá ◽  
Guilherme F Schierholt Neto

The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A) and another from an aeration tank (inoculum B). Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B). The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.


Sign in / Sign up

Export Citation Format

Share Document