scholarly journals Immobilization of Anammox biomass in sodium alginate

2018 ◽  
Vol 44 ◽  
pp. 00008 ◽  
Author(s):  
Anna Banach ◽  
Aneta Pudlo ◽  
Aleksandra Ziembińska-Buczyńska

Anaerobic ammonium oxidation (anammox) is a process of ammonium and nitrite conversion into nitrogen gas. Nowadays, anammox is applied into many wastewater treatment plants worldwide. However, anammox bacteria are characterized by a slow growth rate, which may cause problems in maintaining the biomass in the system. The promising technique which can help to maintain the biomass in the reactor and effectively prevent loss of anammox bacteria from a system is immobilization. Selection and optimization of the appropriate immobilization technique for investigated biomass is crucial for conducting an effective process. One of the ways for bacteria immobilization is gel entrapment. The main goal of the study was to test sodium alginate as an immobilization medium for anammox biomass. In the present study procedure of immobilization in sodium alginate was optimised, then the mechanical and chemical properties of the obtained pellets were investigated. Series of batch experiments revealed that immobilized anammox biomass was able to remove ammonia and nitrite nitrogen effectively. The calculated specific anammox activity (SAA) for immobilized anammox biomass was 0.18 g N·gVSS-1·d-1, while for non-immobilized biomass was 0.36 g N·gVSS-1·d-1.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinyu Li ◽  
Jinhui Chen ◽  
Guo-hua Liu ◽  
Xianglong Xu ◽  
Qian Zhang ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) bacteria significantly improve the efficiency and reduce cost of nitrogen removal in wastewater treatment plants. However, their slow growth and vulnerable activity limit the application of anammox technology. In this paper, the enhancement of biotin on the nitrogen removal activity of anammox bacteria in short-term batch experiments was studied. We found that biotin played a significant role in promoting anammox activity within a biotin concentration range of 0.1–1.5 mg/L. At a biotin concentration of 1.0 mg/L, the total nitrogen removal rate (NRR) increased by 112%, extracellular polymeric substance (EPS) secretion and heme production significantly improved, and anammox bacterial biomass increased to maximum levels. Moreover, the predominant genus of anammox bacteria was Candidatus Brocadia.


2021 ◽  
Vol 83 (4) ◽  
pp. 894-905
Author(s):  
Runxian Tao ◽  
Xingcan Zheng ◽  
Xingfang Guo ◽  
Mai Li ◽  
Shifeng Shen ◽  
...  

Abstract Enough biomass of anaerobic ammonium oxidation (anammox) bacteria is essential for maintaining a stable partial nitrification/anammox (PN/A) wastewater treatment system. Present enrichment procedures are mainly labor-intensive and inconvenient for up-scaling. A simplified procedure was developed for enrichment of anammox biofilm by using secondary effluent as source water with no supplement of mineral medium and unstrict control of influent dissolved oxygen (DO). Anammox biofilm was successfully enriched in two pilot-scale reactors (XQ-cul and BT-cul) within 250 and 120 days, respectively. The specific anammox activity increased rapidly during the last 2 months in both reactors and achieved 2.54 g N2-N/(m2·d) in XQ-cul and 1.61 g N2-N/(m2·d) in BT-cul. Similar microbial diversity and community structure were obtained in the two reactors despite different secondary effluent being applied from two wastewater treatment plants. Anaerobic ammonium oxidizing bacteria genera abundance reached up to 37.4% and 43.1% in XQ-cul and BT-cul biofilm, respectively. Candidatus Brocadia and Ca. Kuenenia dominated the enriched biofilm. A negligible adverse effect of residual organics and influent DO was observed by using secondary effluent as source water. This anammox biofilm enrichment procedure could facilitate the inoculation and/or bio-augmentation of large-scale mainstream PN/A reactors.


2013 ◽  
Vol 79 (13) ◽  
pp. 4087-4093 ◽  
Author(s):  
M. Oshiki ◽  
S. Ishii ◽  
K. Yoshida ◽  
N. Fujii ◽  
M. Ishiguro ◽  
...  

ABSTRACTWe examined nitrate-dependent Fe2+oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “CandidatusBrocadia sinica” anaerobically oxidized Fe2+and reduced NO3−to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+mg protein−1min−1). A15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3−by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3−± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+oxidation was further demonstrated by another anammox bacterium, “CandidatusScalindua sp.,” whose rates of Fe2+oxidation and NO3−reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+oxidation and the anammox reaction decreased the molar ratios of consumed NO2−to consumed NH4+(ΔNO2−/ΔNH4+) and produced NO3−to consumed NH4+(ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1706-1713 ◽  
Author(s):  
Mamoru Oshiki ◽  
Masaki Shimokawa ◽  
Naoki Fujii ◽  
Hisashi Satoh ◽  
Satoshi Okabe

The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3 day−1. The anammox bacteria were identified as representing ‘Candidatus Brocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μmax) was 0.0041 h−1, corresponding to a doubling time of 7 days. The half-saturation constants (K s) for ammonium and nitrite of ‘Ca. B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘Candidatus Brocadia anammoxidans’ and ‘Candidatus Kuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (mol NH 4 + )−1, respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.


2013 ◽  
Vol 67 (10) ◽  
pp. 2330-2336 ◽  
Author(s):  
Takao Yamagishi ◽  
Mio Takeuchi ◽  
Yuichiro Wakiya ◽  
Miyoko Waki

Anaerobic ammonium oxidation (anammox) is a novel biological nitrogen removal process that oxidizes NH4+ to N2 with NO2− as an electron acceptor. The purpose of this study was to examine the potential activity and characteristics of anammox in a conventional swine wastewater treatment facility, which uses an activated sludge system consisting of three cascade aeration tanks equipped with ceramic support material. Anammox activity was estimated by a 15N tracer assay method and was detected in all the sludge and biofilm samples in each aeration tank. Biofilm taken from the third aeration tank, in which the dissolved oxygen concentration was 7.5 mg/L and the wastewater included a high concentration of NO3−, showed by far the highest anammox activity. A clone library analysis showed the existence of anammox bacteria closely related to ‘Candidatus Jettenia asiatica’ and ‘Ca. Brocadia caroliniensis’. The optimum conditions for anammox activity were a pH of 6.7–7.2, a temperature of 35 °C, a NO2− concentration of 10 mmol/L or less, and an NH4+ concentration of 32 mmol/L or less.


2013 ◽  
Vol 69 (4) ◽  
pp. 718-726 ◽  
Author(s):  
Gang-Li Zhu ◽  
Jia Yan ◽  
Yong-You Hu

Anaerobic ammonium oxidation (anammox) has been proved to be a promising nitrogen removal method for treating ammonium-rich wastewater. However, because of the low-growth rate of anammox bacteria, maintenance of a sufficient amount of anammox biomass in reactor became a key factor in application. Gel immobilization is an efficient method to prevent biomass from being washed out and to promote hyper-concentrated cultures. This study focused on a nitrogen removal process by anammox enrichment culture immobilized in polyvinyl alcohol and sodium alginate (PVA-SA) gel beads. The rapid startup of reactor demonstrated that gel entrapment was supposed to be a highly effective technique for immobilizing anammox bacteria. The anammox bacteria present in the enrichment were identified to be Jettenia-like species (>98%). Moreover, the effect of hydraulic retention time (HRT), pH, and temperature on immobilized anammox processes were investigated. The effect of pH and temperature on the anammox process was evidently weakened in PVA-SA immobilized gel beads, however, the effect of HRT on the anammox reaction was enhanced. Therefore, a stable operated reactor could be obtained in an anaerobic sequencing batch reactor, which proved gel immobilization was an excellent method to maintain the biomass in anammox reactor for application.


Author(s):  
Filip Gamoń ◽  
Grzegorz Cema ◽  
Aleksandra Ziembińska-Buczyńska

AbstractAnaerobic ammonium oxidation (anammox) is one of the most promising processes for the treatment of ammonium-rich wastewater. It is more effective, cheaper, and more environmentally friendly than the conventional process currently in use for nitrogen removal. Unfortunately, anammox bacteria are sensitive to various substances, including heavy metals and organic matter commonly found in the wastewater treatment plants (WWTPs). Of these deleterious substances, antibiotics are recognized to be important. For decades, the increasing consumption of antibiotics has led to the increased occurrence of antibiotics in the aquatic environment, including wastewater. One of the most important issues related to antibiotic pollution is the generation and transfer of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Here, we will discuss the effect of short- and long-term exposure of the anammox process to antibiotic pollutants; with a special focus on the activity of the anammox bacteria, biomass properties, community structures, the presence of antibiotic resistance genes and combined effect of antibiotics with other substances commonly found in wastewater. Further, the defense mechanisms according to which bacteria adapt against antibiotic stress are speculated upon. This review aims to facilitate a better understanding of the influence of antibiotics and other co-pollutants on the anammox process and to highlight future avenues of research to target gaps in the knowledge.


2013 ◽  
Vol 1 (4) ◽  
pp. 458
Author(s):  
Dilek ÖZGÜN ◽  
Serden BAŞAK ◽  
Kevser CIRIK ◽  
ARZU KILIÇ ◽  
Dilek Akman ◽  
...  

Anaerobik amonyum oksidasyonu (Anammox) anoksik ortamda amonyumun elektron verici nitritin elektron alıcı olarak azot gazına oksitlendiği proses olarak bilinmektedir. Konvansiyonel nitrifikasyon-denitrifikasyon prosesleriyle karşılaştırıldığında Anammox prosesinde daha az oksijen kullanılmakta ve hiçbir organik madde (metanol, glikoz) içeriğine gerek duyulmamaktadır. Ancak sayılan avantajlarının yanı sıra Anammox bakterilerinin yavaş büyüme oranı (11-30 gün) dezavantajını oluşturmaktadır. Dolayısıyla bu bakterilerin zenginleştirilme safhasında özellikle kesikli reaktörler ile çalışmalar yapılmaktadır. Bu çalışmada sürekli olarak işletilen yukarı akışlı reaktörde (UASB-Upflow anaerobic sludge blanket), farklı dolgu malzemeleri kullanılarak hassas ve yavaş büyüyen Anammox bakterilerinin sistemden dışarıya atılmasının engellenmesi amaçlanmaktadır. Sistem yukarı akışlı kolon reaktörde 2 gün hidrolik bekleme süresinde (HRT-Hydraulic retention time) işletilmiştir. Çalışmada seramik taşlar ve Linpor dolgu malzemesi kullanılmıştır. Her iki dolgu malzemesi ile 45 gün işletilen reaktörlerden seramik taşların kullanıldığı reaktörde amonyum azotunun giderimin hızlı bir şekilde %90’lara ulaştığı gözlenmiştir. Linpor dolgu maddelerinin kullanıldığı reaktörde ise amonyum azotunun giderimi daha yavaş olmuştur. Nitrit azotu ise her iki reaktörde de %90’lara varan giderime ulaşmıştır. Stokiyometrik denkleme göre kıyaslandığında Linporlarda çok fazla miktarda nitrat azotunun oluştuğu görülmüştür. 25 gün sonunda Linporlu reaktörde elde edilen sonuçlarla seramik taş dolgulu reaktördeki sonuçlarla benzerlik göstermiştir. The Effect of Different Filling Materials in Anammox Bacteria Enrichment Anaerobic ammonium oxidation (Anammox) is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose). However, the slow growth rate of Anammox bacteria (11-30 days) is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB) using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. System is operated up-flow column reactor at 2 days hydraulic retention time (HRT). In this study, ceramic stones and Linpor filling material are used. Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors.


2013 ◽  
Vol 781-784 ◽  
pp. 2142-2145
Author(s):  
Wen Juan Fan ◽  
Hong Xiang Ge ◽  
Yu Pang ◽  
Hui Chang

The different ratios (PVA and SA) of PVA/SA blend films with cross-linking structure are successfully prepared by coagulating the mixture of sodium alginate (SA) and polyvinyl alcohol (PVA) in aqueous solution, then by treating with crosslinking agent CaCl2solution. The Surface morphology and flexibility of PVA/SA blend films were studied. The results indicate there is some strong interaction and good compatibility between sodium alginate and polyvinyl alcohol molecular. The physical and chemical properties of the PSA-80(PVA:SA=4:1) blend films are obviously improved owing to a molecular force and hydrogen bond interaction. The effects of parameters of the blend film was investigated in relation to its adsorption capability for low concentration ions Cr (VI) including such as SA content of the PVA/SA film, contact time, solution pH and temperature of solution. The results indicate that the maximum adsorption rate is 95.86% at the temperature 50°C under optimized pH 4 for 60min by PSA-80 films.


2013 ◽  
Vol 62 (2) ◽  
Author(s):  
Norjan Yusof ◽  
Hanisom Abdullah ◽  
Syakirah Samsudin ◽  
Mohd Ali Hassan

Anaerobic ammonium oxidation (anammox) bacteria enrichment was explored for the potential application of ammonium rich wastewater removal. Samples of sludge from mature and young landfill leachate treatment plants were screened and used as inocula for anammox enrichment cultures. Enrichments were monitored for N-NH3, N-NO2- and N-NO3- to detect anammox potential activity. Six of the twelve enrichment cultures showed anammox activity after more than five months of enrichment period. All enrichment cultures that gave positive results were obtained from bottom part of sequencing batch reactor (SBR) lagoon indicating localization of anammox bacteria in anaerobic condition.  Polymerase Chain Reaction (PCR) with specific primers targeting anammox and planctomycete were able to amplify the 16S rRNA sequence for anammox bacteria under PCR optimum condition. However, only three of six positive samples were successfully sequenced. DNA sequence analysis using NCBI (BLAST) and RDP showed that the anammox bacterial sequences of the investigated samples were identified as Candidatus Kuenenia stuttgartiensis with similarity of 100% (NCBI) and 99.3% (RDP).


Sign in / Sign up

Export Citation Format

Share Document