scholarly journals Filamentous bacteria in the nitrifying activated sludge

2018 ◽  
Vol 77 (11) ◽  
pp. 2709-2713 ◽  
Author(s):  
Anna Gnida ◽  
Sebastian Żabczyński ◽  
Joanna Surmacz-Górska

Abstract Filamentous bacteria in addition to wastewater treatment are responsible for the shape of flocs and sedimentation properties of activated sludge. Their dynamics in activated sludge influences the performance of the whole sewage treatment plant. Therefore the composition of activated sludge biocenosis and its dynamics in the nitrification process were investigated. Four laboratory-scale activated sludge membrane bioreactors fed with wastewater highly concentrated with ammonium (synthetic wastewater imitating landfill leachate) were operated to obtain a high rate of nitrification. The sludge age was 8, 12, 24 and 32 days. An additional fifth reactor was conventionally ammonium loaded at 12-day sludge age and served as the reference. A shift in filamentous bacteria population was observed in all operated reactors. There was no influence of sludge age on composition or abundance of filamentous biocenosis. In high ammonium loaded activated sludge Nostocoida limicola, Haliscomenobacter hydrossis and also Type 021N were the most abundant filamentous bacteria. In the reference reactor Type 021N and Sphaerotilus natans dominated the activated sludge.

1996 ◽  
Vol 34 (5-6) ◽  
pp. 145-153 ◽  
Author(s):  
Katsura Kitatsuji ◽  
Hiroshi Miyata ◽  
Tetsuro Fukase

A microbial substance that lyses filamentous bacteria was obtained. The substance also exhibited some properties of a bio-surfactant. Lysing of filamentous bacteria with synthetic surfactants was also examined. Several synthetic surfactants were found to be capable of lysing filamentous bacteria. Nonionic synthetic surfactants with an HLB of 11-15 were found to lyse type 1701 and type 021N in an activated sludge sampled from a sewage treatment plant. Use of the synthetic surfactant to lyse filamentous bacteria was also demonstrated in a continuous-feed aeration tank, and settleability of sludge was improved. The surfactants did not adversely effect floc-forming microorganisms as evidenced by the high rate of TOC removal. The results indicate that synthetic surfactants can be used to prevent filamentous bulking in the activated sludge process.


2009 ◽  
Vol 4 (2) ◽  
Author(s):  
S. M. Faheem ◽  
M. A. Khan

A study was conducted on filamentous bacteria implicated in bulking and foaming problems in activated sludge process of sewage treatment plant in Dubai, United Arab Emirates over a period of six months. To determine morphological characteristics of diverse filaments, foam and mixed liquor samples were collected and studied using various simple and differential staining techniques. Fluorescent in situ hybridization analysis was carried out in mixed liquor samples with nocardioform group specific probes using VIT kit (Vermicon Identification Technology, Vermicon, Munich). The dominant filamentous bacteria identified from mixed liquor and foam samples included: A long branched form of Gram varibale nocardioform actinomycetes species, Thiothrix, Eikelboom Type 021N, Sphaerotilus natans, Beggiatoa and Nostocoida limicola type I. Occasionally attached growth forms of Eikelboom type 0041/0675 like filaments were observed in mixed liquor and foam samples especially during warm weather. All filamentous bacteria identified were found in both the samples throughout the study period. FISH analysis successfully identified filamentous and non-filamentous morphotypes of nocardioform group members. It is concluded that specific filamentous bacterial population in mixed liquor and foaming activated sludge was constant and not dependent on variable wastewater characteristics.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0131532 ◽  
Author(s):  
Magna C. Paiva ◽  
Marcelo P. Ávila ◽  
Mariana P. Reis ◽  
Patrícia S. Costa ◽  
Regina M. D. Nardi ◽  
...  

2001 ◽  
Vol 43 (11) ◽  
pp. 109-117 ◽  
Author(s):  
D. Bixio ◽  
P. van Hauwermeiren ◽  
C. Thoeye ◽  
P. Ockier

The municipal sewage treatment plant (STP) of the city of Ghent (Belgium) has to be retrofitted to a 43%-increase in the nitrogen treatment capacity and to phosphorus removal. Cold weather, dilute sewage and a critical COD over N ratio make the retrofit a challenge for full biological nutrient removal. The potential for fermentation of primary sludge to alter those critical feed sewage characteristics was experimentally evaluated. The idea was that the pinpoint introduction of fermentate could optimise the available reactors by achieving high-rate denitrification and enhanced biological phosphorus removal. The fermentation process was evaluated with a bench scale apparatus. At 20°C (heated process), the hydrolysis yield - expressed in terms of soluble COD - varied from 11% to 24% of the total sludge COD. The fermentation yield expressed in VFA COD varied from 8% to 13% of the total sludge COD. The efficiency of heated fermentation of primary sludge was lower during cold and wet weather, due to the different sewage characteristics, as a result of extended dilution periods and low temperature. The raw sewage, the primary effluent and the fermentate were fractionated according to the requirements for the IAWQ Activated Sludge Model No. 2d. The results clearly show that fermentation in the sewer played an important role and temperature was the driving parameter for the characteristics of the dissolved COD. Instead, the weather flow conditions were the driving parameter for the characteristics of the suspended COD. The results of the detailed fractionation were used as background for process evaluation. The final scenario choice for the retrofit depends on a cost-efficiency calculation.


2002 ◽  
Vol 46 (10) ◽  
pp. 173-179 ◽  
Author(s):  
S. Tanaka ◽  
K. Kamiyama

Effects of a thermochemical pretreatment on the anaerobic digestion of waste activated sludge (WAS) was investigated by semicontinuously-fed digesters operated at 37¡C. WAS from a return sludge line of a municipal sewage treatment plant was pretreated by autoclaving at 130°C for 5 minutes after adding 0.3g NaOH/g VSS. Solids of WAS were thermochemically solubilized to one half and then 60% or more were in totality solubilized in anaerobic digesters fed with pretreated WAS at 2-8 days of hydraulic retention times (HRT), while only 16-36% were solubilized in digesters fed with raw WAS. The adverse effect of the set temperature (130°C) on the biodegradability of protein was not found. As a result, removal rates of COD in digestion was increased from 38% to 57% at 8 days HRT by the pretreatment. A specific methane production rate in the pretreated process was three times as high as the normal process. The thermochemical pretreatment was found to be very effective to enhance biodegradability as well as solubilization of WAS in anaerobic digestion.


2004 ◽  
Vol 46 (6) ◽  
pp. 309-313 ◽  
Author(s):  
Luciana Urbano Santos ◽  
Taís Rondello Bonatti ◽  
Romeu Cantusio Neto ◽  
Regina Maura Bueno Franco

Giardia and Cryptosporidium have caused several outbreaks of gastroenteritis in humans associated with drinking water. Contaminated sewage effluents are recognized as a potential source of waterborne protozoa. Due to the lack of studies about the occurrence of these parasites in sewage samples in Brazil, we compared the efficiency of two procedures for concentrating cysts and oocysts in activated sludge samples of one sewage treatment plant. For this, the samples were submitted to i) concentration by the ether clarification procedure (ECP) and to ii) purification by sucrose flotation method (SFM) and aliquots of the pellets were examined by immunofluorescence. Giardia cysts were present in all samples (100.0%; n = 8) when using ECP and kit 1 reagents, while kit 2 resulted in six positive samples (85.7%; n = 7). As for SFM, cysts were detected in 75.0% and 100.0% of these samples (for kit 1 and 2, respectively). Regarding Cryptosporidium, two samples (25.0%; kit 1 and 28.5% for kit 2) were detected positive by using ECP, while for SFM, only one sample (examined by kit 1) was positive (12.5%). The results of the control trial revealed Giardia and Cryptosporidium recovery efficiency rates for ECP of 54.5% and 9.6%, while SFM was 10.5% and 3.2%, respectively. Considering the high concentration detected, a previous evaluation of the activated sludge before its application in agriculture is recommended and with some improvement, ECP would be an appropriate simple technique for protozoa detection in sewage samples.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 363-374 ◽  
Author(s):  
F. Rogalla ◽  
G. Roudon ◽  
J. Sibony ◽  
F. Blondeau

Stringent effluent quality programs to limit wastewater discharges into receiving waters require extensive upgrading of conventional wastewater treatment plants. Large facilities built some decades ago are now often located in densely urbanised areas where land is unavailable. Since nitrogen and phophorus removal often require additional unit processes, innovative solutions have to be found to upgrade existing plants for nutrient removal. This paper shows large scale examples of compact technology and the additional upgrading flexibility provided. New facilities are implemented in sensitive neighborhoods by creative siting under sports stadiums, parks or buildings. In covered plants, air emission control becomes of primary importance. To reduce visual impacts and facilitate odour control, more and more underground treatment plants are constructed, allowing multiple use of plant surfaces. Several plants are illustrated in inner-city locations, avoiding infrastructure cost to pump sewage to remote sites. Most of the presented plants incorporate spacesaving settling facilities and high rate biological reactors to reduce the ‘footprints' of the installations and thus favour coverage. Parallel plates in primary setllers reduce the surface to about one tenth of conventional systems. Biocarbone aerated filters combine biodegradation with very high removal rates and retention of particles in one reactor, without additional clarification or filtration. Air treatment for large plant is mostly performed by chemical scrubbing, completely eliminating environmental nuisances. Performance results of both air and water treatment technology are given. Examples include recent sewage treatment plants on the French Mediterranean Coast. A physico-chemical treatment plant for 1 Million p.e. has operated since 1987 under a stadium in Marseille. In Monaco, the sewage treatment plant for 100 000 p.e.is located in the city center underneath a building of 3000 m2. Primary lamella settlers are followed by biological treatment on Biocarbone aerated filters and air is chemically deodourised. Similar technology is used in Antibes' 200 000 p.e. plant, integrated underneath a park close to the beach.


2019 ◽  
Vol 14 (1) ◽  
pp. 198-202
Author(s):  
M. Tang ◽  
J. Liu

Abstract Increasing stringency of environmental discharge standards has triggered an industry-wide inclination towards membrane bioreactors over conventional activated sludge processes to ensure fulfilment of environmental discharge criteria. Yet, despite its plentiful advantages, high aeration costs remain as a key deterrent to the widespread adoption of the MBR technology. This backdrop created an impetus for a wastewater treatment company to develop an efficient MBR air scouring protocol that can be realized in existing plants without retrofitting. Known as pulsed cyclic aeration, plant trial applications have demonstrated that fouling control and aeration savings can be improved by >30%, resulting in scouring energy consumptions that can be as low as 0.049 kWh/m3.


Sign in / Sign up

Export Citation Format

Share Document