scholarly journals Detection of the efficiency of microwave–oxidation process for meat industry wastewater by dielectric measurement

2018 ◽  
Vol 78 (10) ◽  
pp. 2141-2148
Author(s):  
Zoltán Jákói ◽  
Cecilia Hodúr ◽  
Zsuzsanna László ◽  
Sándor Beszédes

Abstract Our experimental work focused on the applicability of a quite novel process for wastewater treatment, i.e. a microwave (MW) irradiation-enhanced Fenton-like method. The aim of our research was to detect and evaluate the efficiency of this oxidation process, during the treatment of meat industry wastewater containing a high concentration of organic material. The efficiency was defined by the measurement of the change in COD (chemical oxygen demand, with an initial COD value of 1,568 mg L−1), and with the determination of dielectric parameters during the process. It can be summarized that MW irradiation could assist in a Fenton-like oxidation process to achieve higher organic matter removal. Furthermore, our experimental results and statistical analysis show that there can be found a correlation between the effects of applied MW energy and the dosage of H2O2/FeSO4. If the intensity of MW irradiation and the amount of FeSO4 were set higher, the decrease of COD and the increase of tanδ (the dielectric loss tangent) were definitely more significant. With the application of 60 kJ MWE and a 0.14 mgFe2+/mgCOD dosage, the COD removal efficiency was more than 40%, and the increment of tanδ was nearly threefold. Considering the effects of MW-specific process parameters, it can be concluded that the power intensity of MW–oxidation treatment has a significant effect on COD decrease, if the irradiated MW energy was set at lower (30–45 kJ) levels.

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1139 ◽  
Author(s):  
Juan Morales-Rivera ◽  
Belkis Sulbarán-Rangel ◽  
Kelly Joel Gurubel-Tun ◽  
Jorge del Real-Olvera ◽  
Virgilio Zúñiga-Grajeda

In this paper, electrocoagulation (EC) treatment for the removal of chemical oxygen demand (COD) from cold meat industry wastewater is modeled and optimized using computational techniques. Methods such as artificial neural networks (ANNs) and response surface methodology (RSM), based on the Box–Behnken design using three levels, were employed to calculate the best control parameters for pH (5–9), current density (2–6 mA/cm2) and EC time (20–60 min). Analysis of variance (ANOVA) and 3D graphs revealed that pH and current density are the main parameters used for depicting the EC process. The developed models successfully describe the process with a correlation coefficient of R2 = 0.96 for RSM and R2 = 0.99 for ANN. The models obtained were optimized applying the moth-flame optimization (MFO) algorithm to find the best operating conditions for COD removal. ANN-MFO was used and showed superior COD removal (92.91%) under conditions of pH = 8.9, current density = 6.6 mA/cm2 and an EC time of 38.62 min. The energy consumption with these optimal conditions was 6.92 kWh/m3, with an operational cost of $3.14 (USD)/m3. These results suggest that the proposed computational model can be used to obtain more effective and economical treatments for this type of effluent.


1973 ◽  
Vol 8 (1) ◽  
pp. 1-15 ◽  
Author(s):  
L.A. Addie ◽  
K.L. Murphy ◽  
J.L. Robertson

Abstract The importance of removing the small amounts of residual organics is increasing as the sources of clean surface water decrease. Knowledge of the nature of these soluble residual organics will be needed in order to assess the type of treatment required for their removal. Residual organics in three different biological treatment plants were analyzed and compared. An attempt was made to characterize these organics by a molecular size distribution on a Sephadex column monitored by differential ultraviolet and refractive index detectors. The organic carbon and chemical oxygen demand of the fractions collected from the column was also determined. An investigation of some of the problems inherent in the monitoring systems was conducted.


2013 ◽  
Vol 726-731 ◽  
pp. 2521-2525
Author(s):  
Zhi Yong Zhang ◽  
De Li Wu

Coking wastewater is a kind of recalcitrant wastewater including complicate compositions. Advanced treatment of coking wastewater by Fenton-Like reaction using pyrite as catalyst was investigated in this paper. The results show that the chemical oxygen demand (COD) of coking wastewater decreased significantly by method of coagulation combined with two-stage oxidation reaction. COD of wastewater can decrease from 250mg/l to 45mg/l after treatment, when 2g/L pyrite was used in each stage oxidation and the dosage of hydrogen peroxide (H2O2) is 0.2ml/l for first stage treatment, 0.1ml/l for second stage treatment respectively. The pyrite is effective to promote Fenton-Like reaction with low cost due to high utilization efficiency of H2O2, moreover, catalyst could be easily recovered and reused. The Fenton-Like reaction might be used as a potential alternative to advanced treatment of recalcitrant wastewater.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


Sign in / Sign up

Export Citation Format

Share Document