scholarly journals Modeling and Optimization of COD Removal from Cold Meat Industry Wastewater by Electrocoagulation Using Computational Techniques

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1139 ◽  
Author(s):  
Juan Morales-Rivera ◽  
Belkis Sulbarán-Rangel ◽  
Kelly Joel Gurubel-Tun ◽  
Jorge del Real-Olvera ◽  
Virgilio Zúñiga-Grajeda

In this paper, electrocoagulation (EC) treatment for the removal of chemical oxygen demand (COD) from cold meat industry wastewater is modeled and optimized using computational techniques. Methods such as artificial neural networks (ANNs) and response surface methodology (RSM), based on the Box–Behnken design using three levels, were employed to calculate the best control parameters for pH (5–9), current density (2–6 mA/cm2) and EC time (20–60 min). Analysis of variance (ANOVA) and 3D graphs revealed that pH and current density are the main parameters used for depicting the EC process. The developed models successfully describe the process with a correlation coefficient of R2 = 0.96 for RSM and R2 = 0.99 for ANN. The models obtained were optimized applying the moth-flame optimization (MFO) algorithm to find the best operating conditions for COD removal. ANN-MFO was used and showed superior COD removal (92.91%) under conditions of pH = 8.9, current density = 6.6 mA/cm2 and an EC time of 38.62 min. The energy consumption with these optimal conditions was 6.92 kWh/m3, with an operational cost of $3.14 (USD)/m3. These results suggest that the proposed computational model can be used to obtain more effective and economical treatments for this type of effluent.

2019 ◽  
Vol 9 (3) ◽  
pp. 212-221
Author(s):  
Fatima Erraib ◽  
Khalid El Ass

Box–Behnken response surface design was successfully employed to optimize and study the olive mill wastewater (OMW) treatment by electrocoagulation (EC) process. The influence of four decisive factors were modelled and optimized to increase the removal of chemical oxygen demand (COD). The Box–Behnken design (BBD) results were analyzed and the second-order polynomial model was developed using multiple regression analysis. The model developed from the experimental design was predictive and a good fit with the experimental data with a high coefficient of determination (R2 ) value (more than 0.98). The optimal operating conditions based on Derringer’s desired function methodology are found to be; initial pH of 4.4, a current density of 27.6 mA/cm2 , electrolysis time of 14.1 min, and chloride concentration of 3.2 g/L. Under these conditions, the predicted COD removal efficiency was found to be 67.14% with a desirability value of 0.94. These experimental results were confirmed by validation experiments and proved that Box–Behnken design and response surface methodology could efficiently be applied for modelling of COD removal from OMW.


2018 ◽  
Vol 78 (12) ◽  
pp. 2542-2552 ◽  
Author(s):  
Seval Yılmaz ◽  
Emine Esra Gerek ◽  
Yusuf Yavuz ◽  
Ali Savaş Koparal

Abstract We present electrocoagulation (EC) treatment results of vinegar industry wastewater (VIW) using parallel plate aluminum and iron electrodes, and analyze the toxicity of the treatment processes. Due to the chemical complexity of vinegar production wastewater, several parameters are expected to alter the treatment efficiency. Particularly, current density, initial pH, Na2SO4 as support electrolyte, polyaluminum chloride (PAC) and kerafloc are investigated for their effects on chemical oxygen demand (COD) removal. Following several treatment experiments with real wastewater samples, aluminum-plate electrodes were able to reach to a removal efficiency of 90.91% at pH 4, 10 mg/L PAC and an electrical current density of 20.00 mA/cm2, whereas iron-plate electrodes reached to a removal efficiency of 93.60% at pH 9, 22.50 mA/cm2 current density. Although EC processes reduce COD, the usefulness of the system may not be assessed without considering the resultant toxicity. For this purpose, microtox toxicity tests were carried out for the highest COD removal case. It was observed that the process reduces toxicity, as well as the COD. Consequently, it is concluded that EC with aluminum and iron electrodes is COD removal-wise and toxicity reduction-wise a plausible method for treatment of VIW, which has high organic pollutants.


2017 ◽  
Vol 76 (8) ◽  
pp. 2015-2031 ◽  
Author(s):  
Senem Yazici Guvenc ◽  
Hanife Sari Erkan ◽  
Gamze Varank ◽  
Mehmet Sinan Bilgili ◽  
Guleda Onkal Engin

This study deals with chemical oxygen demand (COD), phenol and Ca+2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R2 = 0.959, R2 = 0.993 and R2 = 0.969 for COD, phenol and Ca+2 removal, respectively, for EC and R2 = 0.936, R2 = 0.934 and R2 = 0.890 for COD, phenol and Ca+2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm2 and H2O2/COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m3 for EC and 7.02 €/m3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.


2014 ◽  
Vol 50 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Malika Aoudjehane ◽  
Mohamed Elghazali Benatallah

A procedure of electrocoagulation (EC) using iron electrodes has been used for the treatment of the wastewaters produced by the Beni-Tamou dairy in Algeria. The effect of the operating conditions, such as the current intensity, the electrolysis time, the pH of the solution and the electrical conductivity, on the removal efficiency of chemical oxygen demand (COD) and the total suspended solids (TSS) has been studied. An inter-electrode distance of 1 cm has been maintained constant during the tests. It has been found that an increase in electrolysis time and current density improved the treatment significantly, albeit with a greater consumption of energy as well as an increased electrode consumption. The results of the electrocoagulation treatment under various operating conditions show that the optimal efficiency has been obtained under the following conditions: 60 minutes of electrolysis, a current density of 200 A/m2, a pH 8, an electrical conductivity of 4.72 mS/cm and a consumption energy of 13.57 kWh/m3. Under these conditions, the removal efficiency for the COD and TSS parameters is 93.26 and 99.3%, respectively. The optimal treatment conditions of dairy wastewaters have resulted in final COD and TSS concentrations of 41.5 and 27 mg/L, respectively, values that are conform to industrial liquid effluents discharge norms.


2020 ◽  
Vol 26 (5) ◽  
pp. 200375-0
Author(s):  
Ramya Suresh ◽  
Baskar Rajoo ◽  
Maheswari Chenniappan ◽  
Manikandan Palanichamy

The present study focused on the various advanced oxidation processes; Ozone, UV radiation, O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>/UV, UV/H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>/UV/H<sub>2</sub>O<sub>2</sub> for treatability of dairy industry wastewater. With this aim, the trials were carried out in cylindrical reactor fortified with UV radiation and Ozone injection. Efficiency of the treatment process was evaluated considering Chemical Oxygen Demand (COD), lactose reduction and process parameters were determined to be reaction time, pH, circulation rate, and H<sub>2</sub>O<sub>2</sub> dosage. 32.5%, 35.2% , 25%, 83% COD and 40.6%, 43.6%, 38.2%, 80% lactose reduction efficiency were obtained under the operating conditions for O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>/UV, UV/H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>/UV/H<sub>2</sub>O<sub>2</sub> processes, respectively. As per this outcome, UV/H<sub>2</sub>O<sub>2</sub>/O<sub>3</sub> process gave more than 65% of COD and 52.36% of lactose reduction efficiency than other hybrid processes. Optimum conditions for UV/H<sub>2</sub>O<sub>2</sub>/O<sub>3</sub> process (pH = 5, time = 180 mins, circulation rate = 50 mL/h and H<sub>2</sub>O<sub>2</sub> dosage of 0.5 mL) resulted in 88% of COD and 93.4% lactose reduction.


2013 ◽  
Vol 303-306 ◽  
pp. 2616-2619
Author(s):  
Xiao Yan Sun ◽  
Pei Dao Pan ◽  
Jang Jie Wang

This mechanical processing waste emulsion for the study, handled by pulse electrolysis. Arrangements by orthogonal testing, experimental study on plate distance (d), current density (i), the pH value and the pulse width (tP) impact on COD removal efficiency, very poor analysis of test data to determine various factors affecting the COD removal efficiency of primary and secondary sort: pH value > current density > pulse width > plate distance, optimal operating conditions. Orthogonal experimental data derived from regression analysis, determination of cross of quadratic polynomial regression equations, mathematical model. Tests confirmed that pulse electrochemical method for treatment of waste emulsion with low energy consumption, short response time, and other advantages, strong applicability of wastewater, building mathematical models, providing theoretical basis for subsequent design.


2020 ◽  
Vol 9 (12) ◽  
pp. e11491210556
Author(s):  
Mariana Lopes Bastos ◽  
Joel Marques da Silva ◽  
Silvânio Silvério Lopes da Costa ◽  
Joel Alonso Palomino-Romero

In this work, an electroflotation (EF) method for the treatment of poultry slaughterhouse effluent was proposed, and its efficiency in reducing chemical oxygen demand (COD) was investigated. The following operating conditions were optimized through Doehlert design: [Al2(SO4)3], pH, treatment time, and current density. Treatment of the effluent was carried out in a reactor with TiO2–RuO2 (anode) and iron (cathode) electrodes. The optimum process conditions were obtained with a pH 9, current density of 60 A m–2, electrolysis time of 80 min, and [Al2(SO4)3] of 1.8 mg L–1. Under these operating conditions, turbidity, COD, and biochemical oxygen demand (BOD) removal efficiencies of 93.1%, 80.7%, and 89.7%, respectively, were obtained. The operating cost of the process was calculated at 0.9 USD per m³. The EF method combined with chemical coagulation was shown to be a suitable process for the treatment of effluent from the slaughter and processing of poultry.


2001 ◽  
Vol 44 (4) ◽  
pp. 167-174 ◽  
Author(s):  
R. M.L. Bolaños ◽  
M. B.A. Varesche ◽  
M. Zaiat ◽  
E. Foresti

A bench-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor was assayed aiming to verify its potential use for phenol degradation. The HAIB reactor consisted of a bore-silicate tube (100 cm long; 5.04 cm diameter) filled with polyurethane foam matrices containing immobilized anaerobic sludge. Before being subjected to phenol, the reactor was fed with synthetic substrate at the influent chemical oxygen demand (COD) of 1,028 mg.l−1 achieving 98% of COD removal efficiency. Thereafter, phenol as the sole carbon source was added under step-increasing concentrations from 50 to 1,200 mg.l−1. Phenol degradation was evaluated by gas chromatographic analysis of influent and effluent samples. Process monitoring included determinations of pH, volatile acids, alkalinity and COD. The HAIB reactor was operated at a constant hydraulic detention time (HDT) of 12 hours. After 33 days with 50 mg/l of phenol in the influent, the reactor achieved 98% of COD removal efficiency. Successful phenol degradation (efficiency removal of 99%) occurred for influent concentrations of 100, 300, 600, 900 and 1,200 mg.l−1 after 148, 58, 47, 29 and 7 days, respectively. The predominance of Methanosaeta-like, rods and methanogenic cocci could be observed in all the operating conditions, besides the presence of phenol oxidizing microorganisms as irregular rods. The results indicate that phenol degradation at very high rates can be accomplished in HAIB reactors containing acclimatized biomass.


Author(s):  
Reza Davarnejad ◽  
Seyed Amir Mohajerani

Abstract The edible plant oil production factories consume high amounts of water and contaminate the water resources. This type of wastewater consists of high chemical oxygen demand (COD) which should properly be treated by an efficient technique. Furthermore, it is containing some chemicals obtained from several sources such as H3PO4 (from hydration section), NaOH (from neutralization section) and citric acid (from nickel removal section). The conventional techniques cannot efficiently treat it which is full of COD. Therefore, the electro-Fenton process as a rapid, compact and efficient one has been encouraged to be applied. For this purpose, 47 experiments were designed and carried out using iron electrodes to evaluate the effects of five significant independent variables such as reaction time (min), pH, current density (mA/cm2), volume ratio of H2O2/wastewater (ml/l) and H2O2/Fe2+ molar ratio on the COD removal. Response surface methodology (RSM) was employed to assess individual and interactive effects of the parameters. The optimum conditions were experimentally obtained at reaction time of 87.33 min, pH of 3.03, current density of 57 mA/cm2, H2O2/wastewater volume ratio of 2.13 ml/l and H2O2/Fe2+ molar ratio of 3.61 for COD removal of 62.94 %.


2018 ◽  
Vol 78 (10) ◽  
pp. 2141-2148
Author(s):  
Zoltán Jákói ◽  
Cecilia Hodúr ◽  
Zsuzsanna László ◽  
Sándor Beszédes

Abstract Our experimental work focused on the applicability of a quite novel process for wastewater treatment, i.e. a microwave (MW) irradiation-enhanced Fenton-like method. The aim of our research was to detect and evaluate the efficiency of this oxidation process, during the treatment of meat industry wastewater containing a high concentration of organic material. The efficiency was defined by the measurement of the change in COD (chemical oxygen demand, with an initial COD value of 1,568 mg L−1), and with the determination of dielectric parameters during the process. It can be summarized that MW irradiation could assist in a Fenton-like oxidation process to achieve higher organic matter removal. Furthermore, our experimental results and statistical analysis show that there can be found a correlation between the effects of applied MW energy and the dosage of H2O2/FeSO4. If the intensity of MW irradiation and the amount of FeSO4 were set higher, the decrease of COD and the increase of tanδ (the dielectric loss tangent) were definitely more significant. With the application of 60 kJ MWE and a 0.14 mgFe2+/mgCOD dosage, the COD removal efficiency was more than 40%, and the increment of tanδ was nearly threefold. Considering the effects of MW-specific process parameters, it can be concluded that the power intensity of MW–oxidation treatment has a significant effect on COD decrease, if the irradiated MW energy was set at lower (30–45 kJ) levels.


Sign in / Sign up

Export Citation Format

Share Document