scholarly journals Microscopically analyzed the interface behavior characteristics of acid precipitation on asphalt surface

Author(s):  
Tengjiang Yu ◽  
Lan Zhou ◽  
Haitao Zhang ◽  
Haomin Wang ◽  
Dan Chen

Abstract It is generally believed that the interaction between acid precipitation and asphalt has an effect on the performance of drainage asphalt pavement, but studies on the interface behavior characteristics from microscopic analysis were rare. Therefore, molecular dynamics (MD) was used to simulate the interfacial transition zone of precipitation (neutral and acid) and asphalt in the study, and the interfacial behavior characteristics of precipitation on asphalt surface were microscopically analyzed. Additionally, the composition of acid precipitation was configured in the laboratory, and the Contact Angles of precipitation solutions (SO42− and NO3−) on asphalt surface also verified the interface behavior characteristics between acid precipitation and asphalt. The results show that the interaction of acid precipitation and asphalt is stronger than that of neutral precipitation, which makes it more difficult to remove on the surface of drainage asphalt pavement. With the increase of service temperature for drainage asphalt pavement, the interaction energy increases. Under the coupling effect of acid precipitation and low service temperature, water damage of drainage asphalt pavement is more easily induced. The results reveal the micro-effect of acid precipitation and service temperature on drainage efficiency of asphalt surface, which has certain theoretical significance and practical value for the application and exploration of drainage asphalt pavement.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 541 ◽  
Author(s):  
Renata Żyłła ◽  
Rafał Milala ◽  
Irena Kamińska ◽  
Marcin Kudzin ◽  
Marta Gmurek ◽  
...  

The aim of the work was to determine the influence of salicylic acid (SA) oxidation products on the effectiveness of their further removal in the membrane filtration process. Two commercial polyamide-based polymer membranes, HL (GE Osmonics) and TS80 (TriSepTM), were used and characterized by SEM microscopic analysis, contact angles, and free surface energy. The products of salicylic acid oxidation, 2,3- and 2,5-dihydroxybenzoic acid and catechol, were determined and their impact on the removal of unreacted salicylic acid in the nanofiltration process was investigated. It was also checked to what extent and why they were retained or not by the membranes. The results of the research have shown that the main product of salicylic acid oxidation, 2,3-dihydroxybenzoic acid, has a negative impact on the retention of salicylic acid in the nanofiltration stage, while the other product, catechol, improves SA retention. The determined values of contact angles correlate well with solubility (S) of the tested compounds, which increases in the following order SSA < S2,3-DHBA < SCAT, while the contact angle of the membrane decreases. Nevertheless, it has been shown that some oxidation products can penetrate the environment due to poorer membrane separation properties of these products.


Author(s):  
Gulraiz Ahmed ◽  
Nektaria Koursari ◽  
Anna Trybala ◽  
Victor M. Starov

Wetting of deformable substrates has gained significant interest over the past decade due to its extensive applications and uses. This interest has developed due to technological advances which are able to capture interfacial behavior taking place when a liquid droplet is placed on a deformable substrate. Researchers have developed different theories to explain processes taking place in the process of wetting of deformable/soft substrates. For the scope of this review, we will consider the fluid to be Newtonian, partially wetting, and surface forces are incorporated with the help of disjoining/conjoining pressure acting in the vicinity of the apparent, three-phase contact line. The following subjects are briefly reviewed: (i) Equilibrium of droplets on soft substrates. It is shown that properties of the disjoining/conjoining pressure isotherm and properties of the deformable substrate determine both the shape of the liquid droplet and deformation of the substrate; (ii) Equilibrium conditions of droplets on deformable substrates. It is shown that for a droplet to be at equilibrium on a deformable substrate under consideration, Jacobi’s sufficient condition is satisfied; (iii) Hysteresis of contact angle of sessile droplets on deformable substrates. It is shown that as the elasticity of the deformable substrate is increased, both advancing and receding contact angles are reduced.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jianlin Xie ◽  
Yangsheng Zhao

Injection of high-temperature water or steam into low-permeability coalbed for efficient and rapid extraction of coalbed methane has been studied by our university for many years and will soon be implemented in the field. With comprehensive consideration of coupling of heat transfer, water seepage, desorption of coalbed methane, and coal-rock mass deformation, the paper establishes a more comprehensive mathematical model of the coupling effect of deformation-seepage-heat transfer on coalbed methane transport. Compared with the previous studies, this theoretical model considers the change of adsorbed and free coalbed methane at high temperature and the coalbed methane transport caused by a high-temperature gradient. Using the Tunlan Coal Mine of Shanxi Coking Coal Group to conduct the numerical simulations on the coalbed methane extraction project using heat injection technology, results show that (1) high-temperature water flowed towards the extraction hole along fractured fissures, with seepage towards the coal mass on both sides of the fissure at the same time, gradually heating the coalbed and forming an arcuate distribution of temperature from high to low for an area from the fractured fissure to the coalbed upper and lower boundaries. On the thirtieth day of heat injection, the temperature of the coalbed in the heat injection area ranged from 140°C to 260°C. (2) Under high temperatures, desorption of the coalbed gas was quick, and the adsorption gas content formed an oval funnel from the heat injection hole towards the extraction hole, centered by the fractured fissure, and migrating towards the coalbed upper and lower boundaries. Along with heat injection and extraction, the absorbed gas content rapidly decreased, and on the thirtieth day of injection, the absorbed gas content of the entire heat injection area decreased to 1.5 m3/t, only 7% of the original. (3) During heat injection, the coalbed gas pore pressure rapidly increased and reached 5.5 MPa on the tenth day, about 4.5 times the original, and the pore pressure steadied at 3.5 MPa on the thirtieth day of extraction. Such a high gas pressure gradient promoted the rapid flow and drainage of the gas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
ZhanLiang Liu ◽  
Chen Zhang ◽  
Xin Qu

Emulsified asphalt mixture has the characteristics of convenient construction and durable performance, but its poor early strength and demulsification seriously restrict the popularization and application of this material. At present, the coal gangue produced by coal-fired power plants is generally discarded, resulting in serious environmental pollution. The combination of coal gangue and emulsified asphalt can explore an efficient utilization way for more and more coal gangue and also solve the curing problem of asphalt. In order to give full play to the advantages of existing materials and make rational use of resources, this paper studies the factors affecting the performance of coal gangue emulsified asphalt mixture based on orthogonal experimental design and optimizes its material composition parameters by considering the coupling effect of two factors. The water stability of coal gangue emulsified asphalt mixture is evaluated by the immersion Marshall test. Finally, the strength formation mechanism of coal gangue emulsified asphalt mixture is analyzed from the microscopic point of view. The results determined 7.5% as the optimum amount of emulsified asphalt in coal gangue emulsified asphalt mixture and recommended the best parameter combination of 7.5% emulsified asphalt, 6% coal gangue, and 5% water consumption. With the increase of coal gangue content, the water loss resistance of emulsified asphalt mixture increases gradually, and the water stability of emulsified asphalt mixture can be improved by adding coal gangue. According to the microscopic analysis, the strength of the mixture is formed by the joint action of emulsified asphalt and coal gangue, in which the hydration products of coal gangue and asphalt play the role of cementation and strength together. The ordinary emulsified asphalt mortar mainly contains CaCO3, which mainly plays the role of physical filling.


2016 ◽  
Vol 697 ◽  
pp. 481-484 ◽  
Author(s):  
San Tuan Zhao ◽  
Xiang Zhao Zhang ◽  
Gui Wu Liu ◽  
Hong Yan Xia ◽  
Zhong Qi Shi ◽  
...  

The Mo-Ni (Co)-Si metallizing coatings on the SiC ceramic substrate were prepared by vacuum cladding process. The wetting and spreading of molten Al on coated SiC ceramic substrates at 900 oC were investigated by the sessile drop technique, and the interfacial behavior of the Al/coated SiC wetting couples was analyzed. The experimental results showed that the final contact angle of Al/M20NiSi coated SiC was close to 0o. With the increase of Mo content in the Mo-Ni-Si coating, the shape of the sessile drop became very irregular due to the strong interactions between the Al drop and the coating, so it was unable to precisely characterize the contact angles of Al/Mo30NiSi and Al/Mo40NiSi systems. The final contact angle of Al/Mo10CoSi coated SiC system was also close to 0o, however, the final contact angle of Al/Mo20CoSi coated SiC system climbed to ~42o with the Mo content increasing from 10 at.% to 20 at.%. The significant increase of contact angle may be caused by the accumulation of Mo near the triple line which can impede the spreading of Al drop.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4078
Author(s):  
Faranak Barandehfard ◽  
James Aluha ◽  
AliReza Hekmat-Ardakan ◽  
François Gitzhofer

The corrosion of refractories in contact with high temperature aluminum-magnesium alloys leads to contamination of the Al-Mg alloy products by solid impurities from degraded refractories. Where both the spinel and corundum phases form in the refractories, cracks are generated and propagated by diffusion of molten Al-Mg, resulting in severe corrosion. In this review paper, the corrosion phenomenon is discussed, and published work is summarized, supplemented by our recent experimental results. Using the Alcan immersion test, materials based on white-fused mullite (WFM) were evaluated for their corrosion resistance and interfacial behavior. WFM was modified using different 2-wt.% of non-wetting additives (NWAs), such as BaSO4, CaF2, Secar®71 cement and wollastonite to improve their performance when in contact with molten Al-Mg alloy at 850 °C for 96 h. The mechanical properties of the samples such as flexural and compressive strength were evaluated, in addition to X-ray diffraction and microscopic analysis (optical and scanning electron microscopy coupled with X-ray elemental mapping). It was observed that cracks formed in samples were promoted with only BaSO4, CaF2, Secar®71 cement or wollastonite. However, cracks did not appear in the sample promoted with both 1-wt.% CaF2 and 1-wt.% BaSO4, because of improved anti-wetting properties in addition to inhibiting spinel (MgAl2O4) formation, which is the main cause of the cracks. This is a significant finding in the prevention of cracks and improvement of the refractory corrosion resistance.


2018 ◽  
Vol 915 ◽  
pp. 185-189
Author(s):  
Ahmet Tığlı ◽  
Tahir Çağın

Interfacial behavior of Al and α-Al2O3 are investigated via molecular dynamic simulation (MD) employing reactive force fields parameterized for Al and Al2O3. The main result of this work is elucidating the wetting behavior and interface chemistry of molten aluminum on the α-Alumina (0001) surface through MD simulations. Wetting and interface chemistry are studied at 8 different temperatures from 700 to 1400 K for four different droplet sizes: with 16, 24, 32 and 40 Å diameters. Chemical reactions are observed at all temperatures and sizes in addition to diffusion between droplet and substrate atoms into each other during the wetting process. To define the level of wetting, we characterized contact angles of aluminum droplets on alumina substrates for all temperatures and sizes by using a method developed by Hautman and Klein. Chemical reactions are more extensive for the small droplets (16 and 24 Å) due to their larger surface to volume ratio in comparison to the larger droplets (32, and 40 Å) of droplets.


2018 ◽  
Vol 2 (4) ◽  
pp. 56
Author(s):  
Gulraiz Ahmed ◽  
Nektaria Koursari ◽  
Anna Trybala ◽  
Victor M. Starov

Wetting of deformable substrates has gained significant interest over the past decade due to a multiplicity of industrial and biological applications. Technological advances in the area of interfacial science have given rise to the ability to capture interfacial behavior between a liquid droplet and an elastic substrate. Researchers have developed several theories to explain the interaction between the two phases and describe the process of wetting of deformable/soft substrates. A summary of the most recent advances on static wetting of deformable substrates is given in this review. It is demonstrated that action of surface forces (disjoining/conjoining pressure) near the apparent three-phase contact line should be considered. Any consideration of equilibrium droplets on deformable (as well as on non-deformable) substrates should be based on consideration of the excess free energy of the system. The equilibrium shapes of both droplet and deformable substrate should correspond to the minimum of the excess free energy of the system. It has never been considered in the literature that the obtained equilibrium profiles must satisfy sufficient Jacobi’s condition. If Jacobi’s condition is not satisfied, it is impossible to claim that the obtained solution really corresponds to equilibrium. In recently published studies, equilibrium of droplets on deformable substrates: (1) provided a solution that corresponds to the minimum of the excess free energy; and (2) the obtained solution satisfies the Jacobi’s condition. Based on consideration of disjoining/conjoining pressure acting in the vicinity of the apparent three-phase contact line, the hysteresis of contact angle of sessile droplets on deformable substrates is considered. It is shown that both advancing and receding contact angles decrease as the elasticity of the substrate is increased and the effect of disjoining/conjoining pressure is discussed. Fluid inside the droplet partially wets the deformable substrate. It is shown that just these forces coupled with the surface elasticity determine the deformation of the deformable substrates.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2615-2631 ◽  
Author(s):  
Mehdi Mohammadi ◽  
Siavash Riahi

Summary Waterflooding is known as an affordable method to enhance oil recovery after primary depletion. However, the chemical incompatibility between injected water and the water in the reservoir may cause the formation of mineral scales. The most effective method for managing such a problem is to use a variety of scale inhibitors (SIs) along with a waterflooding plan. It is necessary to perform a comprehensive study on the incompatibility scaling issue for the candidate-brine/SI formulations, and also their effect on the reservoir-rock/fluid characteristics. In this study, both in the absence and presence of polymeric, phosphonate, and polyphosphonate SIs, the scaling tendency (ST) of different brines is evaluated through experimental and simulation works. Drop-shape analysis (DSA), environmental-scanning-electronic-microscopy (ESEM) observation, energy-dispersive X-ray (EDX) analysis, and microemulsion phase behavior are also used to study the effect of different brine/SI formulations on the rock/fluid and fluid/fluid interactions, through wettability and interfacial-tension (IFT) evaluation. In summary, sulfate (SO42−) was identified as the most problematic ion in the formulation of injected water that causes the formation of solid scales upon mixing with the cation-rich formation water (FW). In the case of SIs, solid precipitation was shifted toward a lower value, with more pronounced effects at higher SI concentrations. At different ionic compositions, the inhibition efficiency (IE%) of all SIs ranged from 16 to 50% at [SI]  = 20 ppm and 38 to 81% at [SI] = 50 ppm. In general, phosphonates worked better (i.e., higher IE value) than polymeric SI. Measuring contact angles along with ESEM/EDX data also illustrated the positive effect of SIs on the wettability alteration of the aged carbonate substrates. In the absence of SIs, the contact angles for different brines were in the range of 70° ≤ θ ≤ 104°, whereas these values fell between 35 and 80° for systems containing 50 ppm of SI. In addition, phase-behavior study and IFT measurement illustrated a salinity-dependence effect of SIs on the interfacial behavior of the oil/water system.


Sign in / Sign up

Export Citation Format

Share Document