scholarly journals Understanding the operational problems and fouling characterization of RO membrane used for brackish water treatment via membrane autopsy

Author(s):  
Cigdem Balcik

Abstract An autopsy of spiral wound RO membrane operated in brackish water treatment was conducted to understand the origin and extent of foulants and fouling mechanisms. Structural and chemical characterization was determined by visual inspection and instrumental analysis such as SEM-EDS and XRD. It was observed that the membrane surfaces were completely covered with a gray/brown pollutant layer in all membrane sheets. SEM images proved accumulation of mineral pollutants on membrane surface. Also, the high levels of Al and Si which was attributed to aluminum silicates originating from feed water were determined on membrane surfaces. Additionally, the XRD analysis results showed that the foulant sample collected from membrane surfaces include halloysite, SiO2 and LiCl components. Fujiwara result proved that no damage was occurred on the membrane surface due to oxidation. Consequently, a fouling control strategy for RO-based brackish water treatment plants was also recommended to increase the membrane life.

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 688
Author(s):  
Muhammad Kashif Shahid ◽  
Younggyun Choi

CO2 capture and utilization (CCU) is a promising approach in controlling the global discharge of greenhouse gases (GHG). This study details the experimental investigation of CO2 utilization in membrane-based water treatment systems for lowering the potential of ionic precipitation on membrane surface and subsequent scale development. The CO2 utilization in feed water reduces the water pH that enables the dissociation of salts in their respective ions, which leave the system as a concentrate. This study compares the efficiency of CO2 and other antifouling agents (CA-1, CA-2, and CA-3) for fouling control in four different membrane-based wastewater reclamation operations. These systems include Schemes 1, 2, 3, and 4, which were operated with CA-1, CA-2, CA-3, and CO2 as antiscalants, respectively. The flux profile and percent salt rejection achieved in Scheme 4 confirmed the higher efficiency of CO2 utilization compared with other antifouling agents. This proficient role of CO2 in fouling inhibition is further endorsed by the surface analysis of used membranes. The SEM, EDS, and XRD examination confirmed the higher suitability of CO2 utilization in controlling scale deposition compared with other antiscalants. The cost estimation also supported the CO2 utilization for environmental friendly and safe operation.


Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joonha Kim

The objective of this study is to design spacers using fluid topology optimization in 2D crossflow Reverse Osmosis (RO) membrane channel to improve the performance of RO processes. This study is an initial attempt to apply topology optimization to designing spacers in RO membrane channel. The performance was evaluated by the quantity of permeate flux penetrating both upper and lower membrane surfaces. A coupled Navier-Stokes and Convection-Diffusion model was employed to calculate the permeate flux. To get reliable solutions, stabilization methods were employed with standard finite element method. The nine reference models which consist of the combination of circle, rectangular, triangle shape and zigzag, cavity, submerge configuration of spacers were simulated. Such models were compared with new model designed by topology optimization. The permeate flux at both membrane surfaces was determined as an objective function. In addition, permissible pressure drop along the channel and spacer volume were used as constraints. As a result of topology optimization as the permissible pressure drop changes in channel, characteristics of spacer design development was founded. Spacer design based on topology optimization was reconstructed to a simple one considering manufactuability and characteristics of development spacer design. When a simplified design was compared with previous 9 models, new design has a better performance in terms of permeate flux and wall concentration at membrane surface.


2010 ◽  
Vol 62 (9) ◽  
pp. 2134-2140 ◽  
Author(s):  
M. Henmi ◽  
Y. Fusaoka ◽  
H. Tomioka ◽  
M. Kurihara

Reverse osmosis (RO) membrane is one of the most powerful tools for solving the global water crisis, and is used in a variety of water treatment scenes such as drinking water purification, waste-water treatment, boiler feed water production, ultra pure water production for semiconductor industry, etc. The desired performance of RO membrane varies according to quality of feed water being treated, and Toray has been developing RO membranes with suitable characteristic for each operating condition. RO membranes for seawater desalination and wastewater reclamation are especially regarded as most promising targets. Recently, high boron removal and energy saving RO membrane for seawater desalination and low fouling RO membrane for wastewater reclamation have been developed. In this paper, the prospect of attaining these renovative RO membrane, and furthermore, job references will be discussed.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 662
Author(s):  
Jiayu Tian ◽  
Xingrui Zhao ◽  
Shanshan Gao ◽  
Xiaoying Wang ◽  
Ruijun Zhang

Brackish water is a potential fresh water resource with lower salt content than seawater. Desalination of brackish water is an important option to alleviate the prevalent water crisis around the world. As a membrane technology ranging between UF and RO, NF can achieve the partial desalination via size exclusion and charge exclusion. So, it has been widely concerned and applied in treatment of brackish water during the past several decades. Hereon, an overview of the progress in research on and application of NF technology for brackish water treatment is provided. On the basis of expounding the features of brackish water, the factors affecting NF efficiency, including the feed water characteristics, operating conditions and NF membrane properties, are analyzed. For the ubiquitous membrane fouling problem, three preventive fouling control strategies including feed water pretreatment, optimization of operating conditions and selection of anti-fouling membranes are summarized. In addition, membrane cleaning methods for restoring the fouled membrane are discussed. Furthermore, the combined utilization of NF with other membrane technologies is reviewed. Finally, future research prospects are proposed to deal with the current existing problems. Lessons gained from this review are expected to promote the sustainable development of brackish water treatment with NF technology.


2011 ◽  
Vol 71-78 ◽  
pp. 3037-3042
Author(s):  
Na Wang ◽  
Jun Ma

The adsorbability of colloidal particles from different stages of a conventional water treatment plant was studied with the assistance of micro-membrane filtration experiment. The microfiltration (MF) performance and the scanning electron microscope (SEM) images of the foulants on membrane surface were investigated. The results showed that the particles in the ozonated water (OW) had the strongest adsorbability, and stronger than that in the clarified water (CW); and the particles in the sand filtrated water (SFW) had relatively weaker adsorbability than that in the raw water (RW). The particles in the sand filter backwash water (SFBW) were mainly consisted of detached aggregates and had weak attachment with the membrane surface.


2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Felipe Novoa ◽  
Johannes S. Vrouwenvelder ◽  
Luca Fortunato

The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.


2009 ◽  
Vol 4 (4) ◽  
Author(s):  
M. Henmi ◽  
Y. Fusaoka ◽  
H. Tomioka ◽  
M. Kurihara

Reverse osmosis (RO) membrane is one of the most powerful tools for solving the global water crisis, and is used in a variety of water treatment scenes such as drinking water purification, waste-water treatment, boiler feed water production, ultra pure water production for semiconductor industry, etc. The desired performance of RO membrane varies according to quality of feed water being treated, and Toray has been developing RO membranes with suitable characteristic for each operating condition. RO membranes for seawater desalination and wastewater reclamation are especially regarded as most promising targets. Recently, high boron removal and energy saving RO membrane for seawater desalination and low fouling RO membrane for wastewater reclamation have been developed. In this paper, the prospect of attaining these renovative RO membrane, and furthermore, job references will be discussed.


2015 ◽  
Vol 475 ◽  
pp. 488-495 ◽  
Author(s):  
Jennifer Runhong Du ◽  
Sigrid Peldszus ◽  
Peter M. Huck ◽  
Xianshe Feng

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joon Ha Kim

The objective of this study is to design spacers using topology optimization in a two-dimensional (2D) crossflow reverse osmosis (RO) membrane channel in order to improve the performance of RO processes. This study is the first attempt to apply topology optimization to designing spacers in a RO membrane channel. The performance was evaluated based on the quantity of permeate flux penetrating both the upper and lower membrane surfaces. Here, Navier–Stokes and convection-diffusion equations were employed to calculate the permeate flux. The nine reference models, consisting of combinations of circle, rectangle, and triangle shapes and zig-zag, cavity, and submerged spacer configurations were then simulated using finite element method so that the performance of the model designed by topology optimization could be compared to the reference models. As a result of topology optimization with the allowable pressure drop changes in the channel, characteristics required of the spacer design were determined. The spacer design based on topology optimization was then simplified to consider manufacturability and performance. When the simplified design was compared to the reference models, the new design displayed a better performance in terms of permeate flux and wall concentration at the membrane surface.


2009 ◽  
Vol 9 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Hongwei Bai ◽  
Xiwang Zhang ◽  
Jiahong Pan ◽  
Darren D Sun ◽  
Jiahui Shao

TiO2 photocatalytic oxidation was combined with microfiltration (MF) (PCOMF) to remove humic acid (HA) in waters through investigating the flux performance, TOC, UV254 and UV436 removal efficiency, the fouled membrane surfaces by SEM. The results demonstrated that the combined PCOMF process showed a high removal efficiency of UV254 and UV436 of HA (close to 100%). The removal efficiency of TOC was about 84.34% indicating that most of HA was mineralized into water and carbon. The SEM images witnessed that the fouling on the membrane surfaces contaminated by PCO effluents after UV254 and UV365 light irradiation was mainly attributed to cake layer, which was reversible due to the increase of aggregated particles size consisting of HA and TiO2. Eventually, the combined PCOMF process displayed an improved effect on HA removal and fouling control to a certain level.


Sign in / Sign up

Export Citation Format

Share Document