scholarly journals Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms

2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Felipe Novoa ◽  
Johannes S. Vrouwenvelder ◽  
Luca Fortunato

The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.

Separations ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mervette El Batouti ◽  
Nouf F. Alharby ◽  
Mahmoud M. Elewa

This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.


2008 ◽  
Vol 57 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Xianghua Wen ◽  
Pengzhe Sui ◽  
Xia Huang

In this study, ultrasound was applied to control membrane fouling development online in an anaerobic membrane bioreactor (AMBR). Experimental results showed that membrane fouling could be controlled effectively by ultrasound although membrane damage may occur under some operational conditions. Based upon the observation on the damaged membrane surface via SEM, two mechanisms causing membrane damage by exerting ultrasound are inferred as micro particle collide on the membrane surface and chemical interaction between membrane materials and hydroxyl radicals produced by acoustic cavitations. Not only membrane damage but also membrane fouling control and membrane fouling cleaning were resulted from these mechanisms. Properly selecting ultrasonic intensity and working time, and keeping a certain thickness of cake layer on membrane surface could be effective ways to protect membrane against damage.


2011 ◽  
Vol 11 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Hongwei Bai ◽  
Darren Delai Sun

Hybrid UV/TiO2 photocatalytic oxidation (PCO) and ultrafiltration (UF) process (PCO-UF) were used to remove humic acid (HA) and control membrane fouling. The PCO-UF process showed advantages in terms of higher removal rate of HA, higher permeate flux and less membrane fouling over UF alone and PCO alone on HA removal and membrane fouling control. Membrane material and pH of feed water were shown to be the influence on the performance of PCO-UF process. It was observed that higher pH of HA feed water and a hydrophobic membrane lead to better removal of HA with relatively higher permeate flux. The experimental results in this study demonstrated that 100 kDa ultraflic UF membrane and pH 9 of HA feed water would be the optimal choice for HA removal in the combined PCO-UF process.


2020 ◽  
Vol 194 ◽  
pp. 04047
Author(s):  
Peng Li ◽  
Shoubin Zhang ◽  
Ying Lv ◽  
Guoqiang Ma ◽  
Xinyi Zuo

Compared with the traditional treatment technologies, inorganic membrane technology is gradually becoming the mainstream of the treatment of oily and salty wastewater, but membrane fouling has become the bottleneck restricting the development of membrane technology. In order to solve this problem, the mechanism of membrane fouling and the control strategies of membrane fouling are introduced in this paper. The atomic layer deposition technology and the preparation of TiO2 nanowires (NWs) film by impregnation method were mainly introduced, aiming to provide a more reliable industrial research status in the field of membrane fouling control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 380
Author(s):  
Yan Chen ◽  
Huiping Li ◽  
Weihai Pang ◽  
Baiqin Zhou ◽  
Tian Li ◽  
...  

Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone–biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 183-190
Author(s):  
R. Liikanen ◽  
H. Kiuru ◽  
T. Tuhkanen ◽  
M. Nyström

Nanofiltration is a very effective technique for improving the removal of trace organics after a conventional chemical water treatment train. However, the fouling of the membranes decreases the applicability of the process, and thus, an understanding and control of membrane fouling are crucial for a more widespread use of nanofiltration in water treatment. The fouling of different nanofiltration membranes by pre-treated surface waters was investigated in a laboratory-scale filtration unit in this study. The results indicate that the traditional chemical treatment does not remove membrane foulants from the surface water. No correlation was found between the feed water constituents and nanofiltration performance, but most feed water components are expected to interact in membrane fouling. Actually, the performance of the nanofiltration process was more related to membrane than to feed water characteristics.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 213
Author(s):  
Stéphane Venne ◽  
Onita D. Basu ◽  
Benoit Barbeau

Membrane fouling in surface waters impacted by cyanobacteria is currently poorly controlled and results in high operating costs. A chemically enhanced backwash (CEB) is one possible strategy to mitigate cyanobacteria fouling. This research investigates the potential of using an ozone CEB to control the fouling caused by Microcystis aeruginosa in filtered surface water on a ceramic ultrafiltration membrane. Batch ozonation tests and dead-end, continuous flow experiments were conducted with ozone doses between 0 and 19 mg O3/mg carbon. In all tests, the ozone was shown to react more rapidly with the filtered surface water foulants than with cyanobacteria. In addition, the ozone CEB demonstrated an improved mitigation of irreversible fouling over 2 cycles versus a single CEB cycle; indicating that the ozone CEB functioned better as the cake layer developed. Ozone likely weakens the compressible cake layer formed by cyanobacteria on the membrane surface during filtration, which then becomes more hydraulically reversible. In fact, the ozone CEB reduced the fouling resistance by 35% more than the hydraulic backwash when the cake was more compressed.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Marek Gryta

AbstractMembrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling.


Author(s):  
Graham Scott ◽  
Ema Chillingworth ◽  
Matthew Dick

Compliance with track standards and control of maintenance costs are critical aspects of the management of railroads. To facilitate this, track geometry measurement systems have evolved to allow monitoring of key track geometry parameters from moving trains. This paper describes how DeltaRail’s Trackline Two™ track geometry measurement system has been developed to overcome key technical shortcomings in existing systems. The resulting step change provides a cost-effective, robust, compact measurement system suitable for use on the broadest possible range of rail vehicles and networks, from a tram to a TGV. Extensive testing has demonstrated full compliance with appropriate standards. Significant improvements in reliability and repeatability of data have enabled DeltaRail to produce a modular system capable of sending data direct to value-adding analysis tools such as TrackMaster™ and VAMPIRE® so that track maintenance management can be optimized around train fleet and operational conditions. The system is easily operated in unattended mode allowing collection of track geometry data from in-service trains, increased frequency of data collection, and pointing the way for the track maintainers to realize significant value from integrated analysis and management options.


2017 ◽  
Vol 595 ◽  
pp. 567-583 ◽  
Author(s):  
Shanxue Jiang ◽  
Yuening Li ◽  
Bradley P. Ladewig

Sign in / Sign up

Export Citation Format

Share Document