scholarly journals Refinement of the engineering practice of evaiuation of the wear rate of excavator impiement components

Dependability ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 18-23 ◽  
Author(s):  
I. V. Gadoiina ◽  
P. A. Pobegayio ◽  
D. Yu. Kritsky ◽  
L. Papić

The existence of humankind on Earth largely depends on the energy at its disposal. It is mostly generated by processing minerals extracted from the Earth’s crust by open-cut mining. The quality and low cost of extraction are largely defined by the dependability of employed machines and mechanisms, plants and process engineering solutions. Various types of excavators are the backbone of a mining machine fleet. Their parts that principally interact with the environment (rock) are components of implements, i.e. primarily the buckets and components of bucket(s). It must be noted that in the process of interaction with the environment (rock) the excavator implements and their components are exposed to so-called abrasive wear. Since abrasive wear of implement components (most frequently excavator bucket teeth) causes their recurrent replacement, this inevitably affects the performance of the excavator as a whole and those process flows it is part of. Occasional interruptions of operation and repairs reduce the availability factor, the most important complex indicator of equipment dependability. Given the above, the aim of this paper is to refine the previously known formula proposed more than thirty years ago in VNIISDM (Reysh A.K.) for evaluation of the rate of abrasive wear of excavator bucket teeth. For the first time, with a sufficient accuracy we examined the multitude of operating modes of mining equipment, i.e. operation of excavators in various conditions, e.g. on different soils. Additionally, we extended Reysh’s approach from single-bucket machines to continuous operation multi-bucket ones. For that purpose, the authors used a method of data integration from known sources, method of full-scale experiment under the operating conditions of a specific excavator and method of mathematical simulation (a form of the Monte Carlo method). All of that allowed revising the values of the parameters in the Reysh formula. The refined formula that we obtained can now be used for the dependability evaluation of machines operating under varying conditions, as well as for the purpose of appointing the time of preventive inspections.

2020 ◽  
Vol 242 ◽  
pp. 228 ◽  
Author(s):  
Sergey IVANOV ◽  
Polina IVANOVA ◽  
Sergey KUVSHINKIN

The development prospects of the mining industry are closely related to the state and development of modern mining machinery and equipment that meet the technical and quality requirements of mining enterprises. Enterprises are focused on a quantitative assessment – the volume of mineral extraction, depending on the functioning efficiency of a promising series of mining machines, which include modern mining excavators. Downtime and unplanned shutdowns of mining excavators directly depend on the operating conditions of the mining machine, which has negative influence on the machine as a whole and its technical condition, which entails a decrease in the efficiency of using expensive mining equipment and economic losses of the mining enterprise. The rationale for external factors that affect the operating time and technical condition of mining excavators is given. For a more detailed assessment of the influence of external influences on the efficiency of operation of mining machines, the influencing factors are divided into two groups: ergatic, directly related to human participation, and factors of a natural-technogenic nature, where human participation is minimized. It was revealed that factors of a natural-technogenic nature have the greatest influence. An algorithm is proposed for a comprehensive assessment of the technical condition and forecasting of operating time both in nominal and in real operating conditions, taking into account factors of a natural and technogenic nature. It is proposed, based on the developed program for planning and evaluating the life of a mining excavator, to adjust the schedules for maintenance and repair (MOT and R) in order to minimize the number of unplanned downtime of a mining excavator and maintain it in good condition.


Author(s):  
Hugo E. Camargo ◽  
Adam K. Smith ◽  
Peter G. Kovalchik ◽  
Rudy J. Matetic

Noise Induced Hearing Loss is the most common occupational disease in the U.S. and of paramount importance in the mining industry. According to data for 2006 from the Mine Safety and Health Administration (MSHA), Continuous Miner operators accounted for 30.2% of underground mining equipment operators with noise doses exceeding the Permissible Exposure Limit (PEL). This figure becomes more significant considering that 49% of the 2006 national underground coal production was extracted using continuous mining methods. Thus, there is a clear need to reduce the sound radiated by Continuous Mining Machines. The first step towards efficient noise control of a Continuous Mining Machine requires identification of the various noise sources under controlled operating conditions. To this end, a 42-microphone phased array was used in conjunction with 4 reference microphones to sample the acoustic field of a machine in the Hemi-anechoic chamber of the Pittsburgh Research Laboratory. These data were processed using a frequency-domain beamforming algorithm to obtain acoustic maps of 5 sides of the machine. The focus of the test was on the conveyor noise since previous studies showed that operation of the conveyor is the most important contributor to the sound radiated by the machine. From the acoustic maps, the following potential areas for noise control were identified, and included: chain-tail-roller interaction, chain flight tip-side board interaction, and chain-upper deck interaction.


This article describes the proposed approaches to creating distributed models that can, with given accuracy under given restrictions, replace classical physical models for construction objects. The ability to implement the proposed approaches is a consequence of the cyber-physical integration of building systems. The principles of forming the data structure of designed objects and distributed models, which make it possible to uniquely identify the elements and increase the level of detail of such a model, are presented. The data structure diagram of distributed modeling includes, among other things, the level of formation and transmission of signals about physical processes inside cyber-physical building systems. An enlarged algorithm for creating the structure of the distributed model which describes the process of developing a data structure, formalizing requirements for the parameters of a design object and its operating modes (including normal operating conditions and extreme conditions, including natural disasters) and selecting objects for a complete group that provides distributed modeling is presented. The article formulates the main approaches to the implementation of an important practical application of the cyber-physical integration of building systems - the possibility of forming distributed physical models of designed construction objects and the directions of further research are outlined.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2020 ◽  
Vol 67 (1) ◽  
pp. 54-59
Author(s):  
Aleksey V. Kuz’michev ◽  
Stanislav S. Trunov ◽  
Dmitriy A. Tikhomirov

Creating and maintaining a microclimate in animal housing is an energy-intensive technological process that consumes up to 70 percent of the thermal energy consumed on cattle farms. Improving heating and ventilation systems aimed at reducing energy consumption is an urgent task. (Research purpose) The research purpose is to analyze the theoretical models for calculating air curtains and evaluate the possibility of their use for agricultural production facilities and to identify promising directions in the design solutions for thermal air curtains aimed at rural consumers. (Materials and methods) The article considers the theoretical justification and calculation of air curtains. The authors studied the physical model of interaction of air jets in openings, which serves as the basis for mathematical calculation of air curtains in engineering practice. The article describes the features of using the models for calculating air curtains for agricultural objects and the energy parameters of the curtains depending on the design characteristics and external environmental factors. (Results and discussion) The effect of the air curtain on the energy characteristics of the room has been studied. It was found that it is necessary to determine the type of air curtain that is optimally suitable for protecting the gate opening, with or without heating the air curtain. Authors have found that the engineering methods of calculation are based on different experimental data, which leads to a discrepancy in the results of evaluating the effectiveness of the designed curtain, overestimating its energy intensity and power. The calculation of heat curtains, operating modes should be carried out taking into account the variable effects of external physical factors, the equipment should correspond to a specific room. (Conclusions) The use of air curtains reduces or eliminates the penetration of external cold air into the room through the openings of external gates, requires a smaller volume of air supplied by the curtain, compared to the mass of the incoming air flow.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Wen-Zheng Wang ◽  
Yan-Ming Wang ◽  
Guo-Qing Shi

Respirable coal particle generated during underground mining is the main cause for gas-dust explosions and coal workers’ pneumoconiosis (CWP) which needs accurate monitoring especially on its concentration. Focusing on the coal dust pollution in the fully mechanized working face of Huangbaici coalmine, coal particle was sampled for further industrial analysis and FT-IR test to obtain its chemical composition and optical constant. Combined with the simulated spatial distribution of airborne dust, the spectral transmission characteristics of coal dust within wavelengths of 2.5 to 25 μm under different operating conditions were obtained. The simulation results show that the transmittance and aerosol optical depth (AOD) of coal dust are closely linked and obviously influenced by the variation of dust generation source (intensity of dust release, position of coal cutting, and the wetting of the coal seam) and airflow field (wind speed and direction of ventilation). Furthermore, an optical channel of 1260–1280 cm−1(7.937–7.813 μm) which is almost only sensitive to the variation of dust concentration but dull to the diameter change of coal dust was selected to establish the correlation of dust concentration and infrared transmittance. The fitting curve was then applied to retrieve the equivalent dust concentration based on optical information, and the comparison results demonstrate that the estimated pollution level is consistent with field measurement data in engineering practice.


2008 ◽  
Vol 18 (02) ◽  
pp. 393-400 ◽  
Author(s):  
ROBERT J. GRASSO ◽  
JOHN C. WIKMAN ◽  
DAVID P. DROUIN ◽  
GEORGE F. DIPPEL ◽  
PAUL I. EGBERT

BAE SYSTEMS has developed a Low Cost Targeting System (LCTS) consisting of a FLIR for target detection, laser-illuminated, gated imaging for target identification, laser rangefinder and designator, GPS positioning, and auto-tracking capability within a small compact system size. The system is based upon BAE Systems proven micro-bolometer passive LWIR camera coupled with Intevac's new EBAPS camera. A dual wavelength diode pumped laser provides eyesafe ranging and target illumination, as well as designation; a custom detector module senses the return pulse for target ranging and to set the range gates for the gated camera. Trials show that the current detectors offer complete extinction of signals outside of the gated range, thus, providing high resolution within the gated region. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. Imagery has been collected in both the laboratory and the field to verify system performance during a variety of operating conditions.


Meccanica ◽  
2021 ◽  
Vol 56 (5) ◽  
pp. 1223-1237
Author(s):  
Giacomo Moretti ◽  
Andrea Scialò ◽  
Giovanni Malara ◽  
Giovanni Gerardo Muscolo ◽  
Felice Arena ◽  
...  

AbstractDielectric elastomer generators (DEGs) are soft electrostatic generators based on low-cost electroactive polymer materials. These devices have attracted the attention of the marine energy community as a promising solution to implement economically viable wave energy converters (WECs). This paper introduces a hardware-in-the-loop (HIL) simulation framework for a class of WECs that combines the concept of the oscillating water columns (OWCs) with the DEGs. The proposed HIL system replicates in a laboratory environment the realistic operating conditions of an OWC/DEG plant, while drastically reducing the experimental burden compared to wave tank or sea tests. The HIL simulator is driven by a closed-loop real-time hydrodynamic model that is based on a novel coupling criterion which allows rendering a realistic dynamic response for a diversity of scenarios, including large scale DEG plants, whose dimensions and topologies are largely different from those available in the HIL setup. A case study is also introduced, which simulates the application of DEGs on an OWC plant installed in a mild real sea laboratory test-site. Comparisons with available real sea-test data demonstrated the ability of the HIL setup to effectively replicate a realistic operating scenario. The insights gathered on the promising performance of the analysed OWC/DEG systems pave the way to pursue further sea trials in the future.


Sign in / Sign up

Export Citation Format

Share Document