scholarly journals Drilling optimization of petroleum wells

2021 ◽  
Vol 8 (1) ◽  
pp. 59-66
Author(s):  
Lucas Sales Rodrigues de Oliveira ◽  
Andreas Nascimento ◽  
Diunay Zuliani Mantegazini ◽  
Nazem Nascimento

The petroleum industry is already demanding lowering exploration costs, which reflects in needs of reducing drilling operational costs, which can be achieved through implementation of more efficiency in operations. Researches have shown that scientist and companies are already experiencing different approaches aiming at boosting drillability. One method not well implemented is variation of flow-rate as a mechanical specific drilling parameter, given its complexity and relation to well integrity. This paper details the influence in flow-rate and related parameters in rate of penetration, showing how DHAP, ECD, Flow-rate and ROP are related to each other. It can be seen that by increasing a flow-rate, an increase in ROP is possible, but that flow-rate changes also influence the down-hole pressure and ECD, what imply in possible downhole differential pressure variation. The higher the down-hole differential pressure, the less will be the implied ROP. All these have influence on drilling efficiency.

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Asadollah Bodaghi ◽  
Hamid Reza Ansari ◽  
Mahsa Gholami

Abstract In the petroleum industry, drilling optimization involves the selection of operating conditions for achieving the desired depth with the minimum expenditure while requirements of personal safety, environment protection, adequate information of penetrated formations and productivity are fulfilled. Since drilling optimization is highly dependent on the rate of penetration (ROP), estimation of this parameter is of great importance during well planning. In this research, a novel approach called ‘optimized support vector regression’ is employed for making a formulation between input variables and ROP. Algorithms used for optimizing the support vector regression are the genetic algorithm (GA) and the cuckoo search algorithm (CS). Optimization implementation improved the support vector regression performance by virtue of selecting proper values for its parameters. In order to evaluate the ability of optimization algorithms in enhancing SVR performance, their results were compared to the hybrid of pattern search and grid search (HPG) which is conventionally employed for optimizing SVR. The results demonstrated that the CS algorithm achieved further improvement on prediction accuracy of SVR compared to the GA and HPG as well. Moreover, the predictive model derived from back propagation neural network (BPNN), which is the traditional approach for estimating ROP, is selected for comparisons with CSSVR. The comparative results revealed the superiority of CSSVR. This study inferred that CSSVR is a viable option for precise estimation of ROP.


Author(s):  
Nils Opedal ◽  
Anisa Noor Corina ◽  
Torbjørn Vrålstad

A recurring issue in the petroleum industry is the performance of cement in relation to its primary role of providing zonal isolation. Enhanced understanding of this subject offers the possibility to improve the planning and design of the cementing job to minimizing the risk of poor bonding of cement and loss of well integrity. The design and execution of the cement job is by no means an easy task, mainly due to the complexity of the material and process, and the variety in conditions one can encounter downhole. Thus, screening of different materials and conditions is necessary to optimize the success of a cement operation. This work focused on experimentally testing cement plugs to be able to understand the sealing ability of cement to a casing at relevant temperatures and pressures. A built-for-purpose test setup was designed and assembled, and the goal of this work was to test this new setup and to establish a proper baseline for future test on various cement systems. The setup consists of a test cell containing the cement plug, an automated pressure regulator used for generating a pressure differential across the cement plug and flow meters to measure the flow rate through the cement plug. The output data from the tests is the differential pressure needed to have breakthrough of gas, and the connection between the flow rate and differential pressure across the cement plug. The possible manipulated variables for the test setup is the cement type and casing surface properties.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


2021 ◽  
Author(s):  
Sakethraman Mahalingam ◽  
Gavin Munro ◽  
Muhammad Arsalan ◽  
Victor Gawski

Abstract When the gas flow rate of a well significantly changes, the flow rate can fall below that of the operating range of a traditional fixed size Venturi meter, necessitating the replacement of the original meter with one of a smaller size. However, with an adjustable cone meter, the internal reconfiguration feature allows it to automatically switch from high operating flow range to low operating flow range and there is no requirement to disassemble the meter from the flow line assembly. Adjustable cone meters were designed, developed and tested at the wet-gas flow loop at National Engineering Laboratory in East Kilbride, Scotland. After calibrating the meter with dry nitrogen gas, the meter was tested with increasing amounts of liquid being injected into the flowline, upstream of the meter. The liquid caused the differential pressure measurement on the meter to over-read. Based on the differential pressure measurements under varying flow conditions, algorithms were developed to measure the dry gas and liquid fraction. The data obtained from the tests such as differential pressure, pressure, temperature, liquid density were used to build an over-reading model of the meter and a liquid fraction estimation model based on pressure loss ratio derived from an additional differential pressure measurement. The model was used to not only to quantify the gas and liquid flow rates but also the estimated error in each measurement. The measurements show that the Adjustable Cone meter is able to provide low uncertainty in both dry and wet gas conditions and offers a turndown ratio of up to 54:1 in dry gas conditions. In addition, the automatic adjustment of the meter from high flow to low flow positions avoids the need for manual intervention that involves additional risk and cost.


2018 ◽  
Vol 43 ◽  
pp. 01012
Author(s):  
Ikhtiander ◽  
Soekirno Santoso

This paper describes the work done in order to make Matlab Simulink based steam generator simulator in the simulation of a steam generator. The steam generator under this research is operated with the steam quality of 72%, O2 content is 1.2%, designed steam volume flow is 3600 barrel per day at a maximum and designed fuel gas volume flow is 1300 Thousand Standard Cubic Feet (MSCF) per day at a maximum. The simulator program of the steam generator is separated into individual components consisting of Burner, Radiant, Convection, Exhaust Stack, Feedwater Pump Discharge and Steam Discharge. Within the components, thermodynamics and heat transfer principles such as conduction, convection, radiation and also conservation of mass, momentum, and energy were applied to compute the pressure values, temperature values, and flow rate values of simulated field device based on the command and setpoint from PLC. The validation process has been done with the steam generator is operating in a steady state to the 10 important process parameters of the steam generator. The error percentage calculated from a difference between the simulation result value and the actual value from field data reference divide by actual value from field data reference. The error percentage results are as following : Fuel Gas Orifice Differential Pressure : 2.39%, Fuel Gas Pressure : 1.37%, Fuel Gas Temperature : 5.95%, Fuel Gas Flow Rate : 1.25%, Feedwater Orifice Differential Pressure : 1.94%, Feedwater Pressure : 1.54%, Feedwater Flow Rate : 0.92%, Steam Orifice Differential Pressure 3.26%, Steam Discharge Pressure 1.93% and Steam Quality : 0.05%.


Author(s):  
Ioan DROCAS ◽  
Ovidiu MARIAN ◽  
Ovidiu RANTA ◽  
Sorin STANILA ◽  
Mircea MUNTEAN ◽  
...  

Reduced environmental pollution and ensuring fair treatment in crops can be achieved through constructive and functional upgrading of spraying machines. The paper studies the variation of the nozzle flow, liquid pressure and uniformity of distribution for the EEP-600M machine. The experimental results have shown changes in the functional parameters of the nozzle (flow and pressure) depending on the nozzle position on the ramp section. The way of connecting the hoses leading the solution to the ramp and the number of nozzles per segment can influence the uniformity of distribution of the solution.


1981 ◽  
Vol 21 (04) ◽  
pp. 425-434 ◽  
Author(s):  
Stefan Miska ◽  
Pal Skalle

Abstract Drilling hydraulics have considerable effect on the rate of penetration. Previous studies have examined this problem; however, the effects of differential pressure and reliability of pumping equipment usually were neglected. This paper gives a general description of hydraulic drilling parameters optimized when both these effects were considered. To derive the necessary conditions for optimal hydraulics a nonlinear programming method was applied. Introduction In the rotary drilling process the rock must be fractured at the bottom of the hole. To allow further fracturing and drilling progress, the cuttings must be removed from the bottom efficiently and transported toward the surface. For these purposes, both mechanical and hydraulic energy are brought from the surface to the rock face and should be applied in optimal manner. Previous work in drilling hydraulics has established that this has considerable influence on the rate of penetration as well as on other indicators of drilling efficiency. For that reason, this topic has been a subject of several investigations, both theoretical and experimental. Optimal hydraulics is the proper balance of hydraulic elements that satisfy some criterion of estimation (the objective function). For given drilling fluid properties, these parameters are flow rate (q) and equivalent jet bit nozzle diameter (de). Hydraulic quantities commonly used to characterize jet bit performance include hydraulic horsepower, jet impact force, jet velocity, and Reynolds number at the bit nozzles. However, all these hydraulic quantities are determined when the flow rate and equivalent nozzle diameter have been established. Briefly, the methods of optimal hydraulics program design can be divided in two groups:methods which depend on determining the bottomhole cleaning required, usually bit hydraulic horsepower, to balance the mechanical energy level, andmethods which assume maximization of an arbitrarily established criterion of estimation. Methods in Group 1 have limited application during drilling program design since the required level of hydraulic horsepower, for given mechanical parameters (weight-on-bit and rotary speed combinations) in a particular formation interval, require field tests and thus they cannot be applied before drilling. This method is indicated in Fig. 1. Fullerton has balanced the mechanic and hydraulic energy by means of the "constant drilling energy" concept, valid for some formation types. The various criteria to be maximized in Group 2 are hydraulic horsepower, jet impact force, jet velocity, and Reynolds number. The basic work on this topic was published by Kendall and Goins. Methods for selecting proper nozzle sizes and flow rams are given for each criterion of estimation except the Reynolds number. The latter criterion is discussed by other authors, but they discussed optimal flow rates and equivalent nozzle diameter only for the constant pump pressure range. It was shown that using maximum Reynolds number at the bit nozzles as an objective function for optimal hydraulic program design gives the same result as for maximum jet impact force. SPEJ P. 425^


Sign in / Sign up

Export Citation Format

Share Document