scholarly journals Research Regarding the Flow Rate and Pressure Variation for the Nozzles Mounted on the Eep-600m Spraying Machine

Author(s):  
Ioan DROCAS ◽  
Ovidiu MARIAN ◽  
Ovidiu RANTA ◽  
Sorin STANILA ◽  
Mircea MUNTEAN ◽  
...  

Reduced environmental pollution and ensuring fair treatment in crops can be achieved through constructive and functional upgrading of spraying machines. The paper studies the variation of the nozzle flow, liquid pressure and uniformity of distribution for the EEP-600M machine. The experimental results have shown changes in the functional parameters of the nozzle (flow and pressure) depending on the nozzle position on the ramp section. The way of connecting the hoses leading the solution to the ramp and the number of nozzles per segment can influence the uniformity of distribution of the solution.

1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


2014 ◽  
Vol 697 ◽  
pp. 17-20
Author(s):  
Ping Tan

The binding material and concrete are prepared by desulphurization gypsum, cement, stone, sand and admixture. The performances of binding material are studied in the paper. The experimental results showed that it is absolutely feasible to prepare binding material by using cement, desulphurization gypsum and superplasticizer after drying and screening of desulphurization gypsum. The binding material was prepared by adding desulphurization gypsum replacing 10 percent cement and superplasticizer. the cement micellae compressive and bending strength of the binding material can meet the standard requirements of P.O42.5 and the binding material’s set time and soundness are up to standard. The concrete was prepared by adding desulphurization gypsum replacing 30 percent cement and superplasticizer. The concrete’s strength is up to standard of the C30 concrete, and its impermeability meets the requirement of P12. To execute the research can not only massively use waste sludge desulphurization gypsum but also solve environmental pollution.


Author(s):  
Yun-Hao Peng ◽  
Dai-Hua Wang ◽  
Lian-Kai Tang

Parametric simulation of multi-chamber piezoelectric pump proposed by authors shows that its flow rate is positively correlated with chamber compression ratio when height of chamber wall is not less than central deflection of circular piezoelectric unimorph actuator (CPUA). Therefore, in this paper, principle and structure of multi-chamber piezoelectric pump with novel CPUAs with three-layer structure are proposed and realized, so as to improve its chamber compression ratio, and then improve its flow rate. Its processing technology compatible with PCB processing technology is studied and its flow rate model is established. Central deflection of CPUA with three-layer structure and the flow rate characteristics are tested. Experimental results show that when the central deflection of CPUA with three-layer structure reaches the maximum value of 106.8 μm, the chamber compression ratio and flow rate of multi-chamber piezoelectric pump reach the maximum value of 50% and 3.11 mL/min, respectively. The maximum flow rate is increased by 622% compared to unimproved pump. By comparing experimental results with numerical and finite element simulation results, the realized multi-chamber piezoelectric pump has large flow rate and the established flow rate model can predict its flow rate.


1979 ◽  
Vol 46 (2) ◽  
pp. 465-468 ◽  
Author(s):  
V. K. Kapur ◽  
J. S. Yadav

In the present analysis, the interactions of thermal effects and velocity slip on the performance of externally pressurized porous incompressible gas thrust bearing have been studied. Numerical results for load capacity, mass flow rate, and static stiffness have been obtained and their behavior is illustrated in figures. The results for slip as well as no-slip condition have also been compared with the experimental results of Gargiulo and Gilmour [7].


Author(s):  
S. M. Miner ◽  
R. D. Flack ◽  
P. E. Allaire

Two dimensional potential flow was used to determine the velocity field within a laboratory centrifugal pump. In particular, the finite element technique was used to model the impeller and volute simultaneously. The rotation of the impeller within the volute was simulated by using steady state solutions with the impeller in 10 different angular orientations. This allowed the interaction between the impeller and the volute to develop naturally as a result of the solution. The results for the complete pump model showed that there are circumferential asymmetries in the velocity field, even at the design flow rate. Differences in the relative velocity components were as large as 0.12 m/sec for the radial component and 0.38 m/sec for the tangential component, at the impeller exit. The magnitude of these variations was roughly 25% of the magnitude of the average radial and tangential velocities at the impeller exit. These asymmetries were even more pronounced at off design flow rates. The velocity field was also used to determine the location of the tongue stagnation point and to calculate the slip within the impeller. The stagnation point moved from the discharge side of the tongue to the impeller side of the tongue, as the flow rate increased from below design flow to above design flow. At design flow, values of slip ranged from 0.96 to 0.71, from impeller inlet to impeller exit. For all three types of data (velocity profiles, stagnation point location, and slip factor) comparison was made to laser velocimeter data, taken for the same pump. At the design flow, the computational and experimental results agreed to within 17% for the velocity magnitude, and 2° for the flow angle. The stagnation point locations coincided for the computational and experimental results, and the values for slip agreed to within 10%.


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
David Denkenberger ◽  
Joshua M. Pearce ◽  
Michael Brandemuehl ◽  
Mitchell Alverts ◽  
John Zhai

A finite difference model of a heat exchanger (HX) considered maldistribution, axial conduction, heat leak, and the edge effect, all of which are needed to model a high effectiveness HX. An HX prototype was developed, and channel height data were obtained using a computerized tomography (CT) scan from previous work along with experimental results. This study used the core geometry data to model results with the finite difference model, and compared the modeled and experimental results to help improve the expanded microchannel HX (EMHX) prototype design. The root mean square (RMS) error was 3.8%. Manifold geometries were not put into the model because the data were not available, so impacts of the manifold were investigated by varying the temperature conditions at the inlet and exit of the core. Previous studies have not considered the influence of heat transfer in the manifold on the HX effectiveness when maldistribution is present. With no flow maldistribution, manifold heat transfer increases overall effectiveness roughly as would be expected by the greater heat transfer area in the manifolds. Manifold heat transfer coupled with flow maldistribution for the prototype, however, causes a decrease in the effectiveness at high flow rate, and an increase in effectiveness at low flow rate.


2013 ◽  
Vol 790 ◽  
pp. 53-56
Author(s):  
Chen Jian ◽  
Xu Yan Ying ◽  
Wang Na

This paper presents an experimental study of fire suppression effectiveness with water mist containing FeCl2 additives.The investigation focuses on suppression effectiveness under various FeCl2 additives concentrations,working pressures and nozzle different height above the fire source . The experimental results show that: there is a significant impact on fire suppression effectiveness when adding FeCl2 to water mist. There is an optimum additive concentration of extinguishing fire, corresponding to the shortest extinguishing time, the least amount of water, the highest efficiency of extinguishing fire. The nozzle working pressures and nozzle position have effect on the performance of the water mist extinguishing: the greater the pressure is, the shorter water mist fire extinguishing time is. Under the same experimental conditions, the closer the water mist nozzles are to the oil pan, the shorter extinguishing time is.


Author(s):  
G. Mimmi

Abstract In a previous paper the author proposed a method to reduce the periodic variation in flow rate for an external gear pump. To verify the experimental results, a series of experimental tests on a expressly realized gear pump, was carried out. The pump was equipped with relieving grooves milled into the side plates. The tests were done on a closed piping specifically realized and equipped for measuring the instantaneous flow rate of the fluid through a wedge-shaped hot film probe.


Author(s):  
Sebastian Wittwer ◽  
Ivo Sandor

Abstract Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.


2019 ◽  
Vol 290 ◽  
pp. 01008
Author(s):  
Milos Matejic ◽  
Mirko Blagojevic ◽  
Ileana Ioana Cofaru ◽  
Nenad Kostic ◽  
Nenad Petrovic ◽  
...  

Cycloid reducers are gear trains which can be classified as planetary transmissions. These transmissions have a very wide range of uses in industry in transporters, robots, satellites, etc. This research presents a comparative analysis of three analytical methods for determining cycloid drive efficiency. The paper explores every mathematically formulated method and compares them to experimental results from literature. The presented methods for determining efficiency have a common property, in that they all determine losses due to friction on the bearing cam surface of the shaft, the rollers of the central gear and the output rollers. The calculation of efficiency values is done for standard power values. The methods differ primarily in the way they calculate losses. For each method of calculating efficiency there is an analysis of pros and cons. The paper concludes with suggestions as well as possible directions for further research.


Sign in / Sign up

Export Citation Format

Share Document