Industrial Fuel Flexibility Workshop

2006 ◽  
Author(s):  
none,
Keyword(s):  
2016 ◽  
Vol 2016 (12) ◽  
pp. 2555-2563
Author(s):  
Ted Hull ◽  
Manuel Moncholi ◽  
Ernesto Coro
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 661
Author(s):  
Martin Meiller ◽  
Jürgen Oischinger ◽  
Robert Daschner ◽  
Andreas Hornung

The heterogeneity of biogenic fuels, and especially biogenic residues with regard to water and ash content, particle size and particle size distribution is challenging for biomass combustion, and limits fuel flexibility. Online fuel characterization as a part of process control could help to optimize combustion processes, increase fuel flexibility and reduce emissions. In this research article, a concept for a new sensor module is presented and first tests are displayed to show its feasibility. The concept is based on the principle of hot air convective drying. The idea is to pass warm air with 90 °C through a bulk of fuel like wood chips and measure different characteristics such as moisture, temperatures and pressure drop over the bulk material as a function over time. These functions are the basis to draw conclusions and estimate relevant fuel properties. To achieve this goal, a test rig with a volume of 0.038 m3 was set up in the laboratory and a series of tests was performed with different fuels (wood chips, saw dust, wood pellets, residues from forestry, corn cobs and biochar). Further tests were carried out with conditioned fuels with defined water and fines contents. The experiments show that characteristic functions arise over time. The central task for the future will be to assign these functions to specific fuel characteristics. Based on the data, the concept for a software for an automated, data-based fuel detection system was designed.


Author(s):  
Tim Lieuwen ◽  
Vince McDonell ◽  
Eric Petersen ◽  
Domenic Santavicca

This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. Of particular concern is the effect of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. This paper reviews available results and current understanding of the effects of fuel composition on the operability of lean premixed combustors. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.


Author(s):  
Wolfgang Kappis ◽  
Stefan Florjancic ◽  
Uwe Ruedel

Market requirements for the heavy duty gas turbine power generation business have significantly changed over the last few years. With high gas prices in former times, all users have been mainly focusing on efficiency in addition to overall life cycle costs. Today individual countries see different requirements, which is easily explainable picking three typical trends. In the United States, with the exploitation of shale gas, gas prices are at a very low level. Hence, many gas turbines are used as base load engines, i.e. nearly constant loads for extended times. For these engines reliability is of main importance and efficiency somewhat less. In Japan gas prices are extremely high, and therefore the need for efficiency is significantly higher. Due to the challenge to partly replace nuclear plants, these engines as well are mainly intended for base load operation. In Europe, with the mid and long term carbon reduction strategy, heavy duty gas turbines is mainly used to compensate for intermittent renewable power generation. As a consequence, very high cyclic operation including fast and reliable start-up, very high loading gradients, including frequency response, and extended minimum and maximum operating ranges are required. Additionally, there are other features that are frequently requested. Fuel flexibility is a major demand, reaching from fuels of lower purity, i.e. with higher carbon (C2+), content up to possible combustion of gases generated by electrolysis (H2). Lifecycle optimization, as another important request, relies on new technologies for reconditioning, lifetime monitoring, and improved lifetime prediction methods. Out of Alstom’s recent research and development activities the following items are specifically addressed in this paper. Thermodynamic engine modelling and associated tasks are discussed, as well as the improvement and introduction of new operating concepts. Furthermore extended applications of design methodologies are shown. An additional focus is set ono improve emission behaviour understanding and increased fuel flexibility. Finally, some applications of the new technologies in Alstom products are given, indicating the focus on market requirements and customer care.


Author(s):  
Douglas A. Pennell ◽  
Mirko R. Bothien ◽  
Andrea Ciani ◽  
Victor Granet ◽  
Ghislain Singla ◽  
...  

This paper introduces and presents validation of the Constant Pressure Sequential Combustion system (denoted CPSC), a second generation concept developed for and applied to the new Ansaldo GT36 H-class gas turbine combustors. It has evolved from the well-established sequential burner technology applied to all current GT26 and GT24 gas turbines, and contains all architectural improvements implemented since original inception of this engine frame in 1994, with beneficial effects on the operation turndown, fuel flexibility, on the overall system robustness, and featuring the required aspects to stay competitive in the present day energy market. The applied air and fuel management therefore facilitate emission and dynamics control at both the extremely high and low firing temperature ranges required for existing and future Ansaldo gas turbine engine classes.


2021 ◽  
Author(s):  
A. Ciani ◽  
J. P. Wood ◽  
M. Maurer ◽  
B. Bunkute ◽  
D. Pennell ◽  
...  

Abstract Modern gas turbines call for an ultra-high firing temperature and fuel flexibility while keeping emissions at very low levels. Sequential combustion has demonstrated its advantages toward such ambitious targets. A sequential combustion system, as deployed in the GT26 and GT36 engines, consists of two burners in series, the first one optimized to provide the optimum boundary condition for the second one, the sequential burner. This is the key component for the achievement of the required combustor performance dictated by F and H class engines, including versatile and robust operation with hydrogen-based fuels. This paper describes the key development considerations used to establish a new sequential burner surpassing state-of-the-art hardware in terms of emission reduction, fuel flexibility and load flexibility. A novel multi-point injector geometry was deployed based on combustion and fluid dynamic considerations to maximize fuel / air mixing quality at minimum pressure loss. Water channel experiments complemented by CFD describe the evolution of the fuel / air mixture fraction through the mixing section and combustion chamber to enable operation with major NOx reduction. Furthermore, Laser Doppler Anemometry and Laser Induced Fluorescence were used to best characterize the interaction between hot-air and fuel and the fuel / air mixing in the most critical regions of the system. To complete the overview of the key development steps, mechanical integrity and manufacturing considerations based on additive manufacturing are also presented. The outcome of 1D, CFD and fluid dynamic experimental findings were then validated through full-scale, full-pressure combustion tests. These demonstrate the novel Center Body Burner is enabling operation at lower emissions, both at part load and full load conditions. Furthermore, the validation of the burner was also extended to hydrogen-based fuels with a variety of hydrogen / natural gas blends.


Author(s):  
Min Soo Kim ◽  
Young Sang Kim ◽  
Young Duk Lee ◽  
Minsung Kim ◽  
dongkyu Kim

Abstract This study analyzed the internal phenomena of solid oxide fuel cells driven by liquefied natural gas. Reforming reactions of liquefied natural gas constituent in the solid oxide fuel cells were examined. First, the performance of solid oxide fuel cells using liquefied natural gas was compared to those using methane as fuel. Liquefied natural gas-driven solid oxide fuel cells outperformed methane-driven solid oxide fuel cells under all current conditions, with a maximum performance difference of approximately 12.8%. Then, the effect of inlet composition ratio on the internal phenomena in the solid oxide fuel cells was examined. The lower the steam-to-carbon ratio, the higher the steam reforming reaction in the cell. By changing the ratio, 7.1% of more hydrogen could be reformed. Finally, the effect of reformer operation on the internal phenomena in the solid oxide fuel cells was examined. Under 0.35 A/cm2, lower pre-reforming rate of reformer enhance the performance of solid oxide fuel cells. At high current density region, however, a higher pre-reforming rate of reforming is more favorable because the reforming reaction is rare in solid oxide fuel cells. This research can provide guidelines for achieving high power output of solid oxide fuel cells with high fuel flexibility.


Energy ◽  
2021 ◽  
pp. 122279
Author(s):  
A. Zachl ◽  
M. Buchmayr ◽  
J. Gruber ◽  
A. Anca-Couce ◽  
R. Scharler ◽  
...  

Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Sign in / Sign up

Export Citation Format

Share Document