scholarly journals CHARACTERIZATION OF INFREQUENT SAMPLES FROM THE CONCENTRATION, STORAGE, AND TRANSFER FACILITY: LEAK DETECTION BOX (LDB) DRAIN CELL SAMPLE LIMS# 20195

2020 ◽  
Author(s):  
LAWRENCE OJI ◽  
SAVIDRA LUCATERO
Keyword(s):  
Author(s):  
Selorme Agbleze ◽  
Fernando V. Lima ◽  
Natarianto Indrawan ◽  
Rupendranath Panday ◽  
Paolo Pezzini ◽  
...  

Abstract Due to the increased penetration of renewable power sources into the electric grid, the current number of existing coal-fired power plants shifting from baseload to load-following operations has also increased. This shift creates challenges especially for the power industry as coal-fired power plants were not designed for ramping situations, leading to added stress on major components of these plants. This stress causes the system to degrade over time and eventually develop faults. As boilers are still the primary component that fails and causes forced outages, accurate characterization of faults and fractures of boilers is now becoming increasingly critical to reduce plant downtime and extend the plant life during cycling operations. This work focuses on modeling sections of a subcritical coal-fired power plant and proposes algorithms for fault detection in MATLAB/Simulink. The developed model simulates the process dynamics including steam and feedwater flow regulating valves, drum-boiler, and heat rate on the regulation of pressure, drum level and production of saturated steam. The model also simulates the dynamics of superheaters for increasing the energy content of steam, and a spray section for regulating the temperature of steam upstream of the high-pressure turbine to allow for power output adjustment within a given valve operating range. Furthermore, an extension to a leak detection framework proposed by co-authors in previous work is explored. The new framework includes a modification to the threshold analysis portion of the previous work. The extended framework is then applied to a subcritical coal-fired power plant model for leak detection. In particular, this framework analyzes mismatches or deviations in expected plant dynamics with an identified transfer function model. The mismatch is flagged after it exceeds a threshold. The developed algorithm thus aids in rapid detection of faults to reduce impeded plant performance. The results of this work will support real plant operations by providing an accurate characterization of faults in the operation of coal-fired power plants.


Author(s):  
James E. Short

This paper introduces a new, active methodology to modeling and leak detection intended to mitigate the effects of data uncertainty in such challenging situations, and presents three case studies. The American Petroleum Institute (API) has coined the phrase Computational Pipeline Monitoring (CPM) to encompass several methods of leak detection. The use of real-time transient hydraulic simulation tools, driven by data gathered by a Supervisory Control and Data Acquisition (SCADA) system, is one form of CPM system. Such real-time simulations impose SCADA-gathered data (typically pressures, flows, temperatures) onto a characterization of the pipeline (the model) and the fluids in the system. In a tuned CPM system, if the SCADA-gathered data cannot be successfully imposed on the model without transgressing the laws of fluid mechanics, this signifies a pipeline anomaly, which may be a release. However, in reality, many pipeline hydraulic anomalies are due to changing uncertainties in the data presented to the model and if annunciated to the pipeline operators would constitute a “false leak alarm.” While they typically are not large enough to compromise pipeline operations, uncertainties abound in the SCADA-gathered data. Even were the SCADA-gathered pressure and temperature data to contain no uncertainty, the fluid properties might not be sufficiently characterized for the simulation to accurately calculate how the fluid behaves under pressure and/or temperature changes. Measurement failure further complicates the task of the CPM application, as does slack line flow. Uncertainty in the CPM-driving data is not constant, it is ever-changing with variations in the pipeline flow rate, the characterization of the fluids in the line, and the quality of the individual measurement data, to mention only a few. CPM systems use a variety of methodologies to vary their sensitivity according to the uncertainty in the data used for their calculations. However, in general terms, the more uncertainty there is in the data, the lower the resulting system sensitivity becomes. Active features in a CPM leak detection system can mitigate the performance degradation due to varying data uncertainty.


2020 ◽  
Vol 206 (9) ◽  
pp. 1409-1420
Author(s):  
Marica Eboli ◽  
Alessandro Del Nevo ◽  
Nicola Forgione ◽  
Fabio Giannetti ◽  
Daniele Mazzi ◽  
...  

2009 ◽  
Author(s):  
Ani Duan ◽  
Kaiying Wang ◽  
Knut Aasmundtveit ◽  
Nils Hoivik
Keyword(s):  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document