A Novel Hybrid Metaheuristic Approach to Perceive Gender Based Identification System

Author(s):  
Aparna Shukla ◽  
Suvendu Kanungo

Background: Gender recognition is one of the most challenging perceptible tasks that receiving attention in the increasing digital data era as the requirement of personalized, reliable and ethical system inevitable. A problem that we address in this paper, greatly deals with the gender based identification system. We are motivated by this problem as many recent social interactions and existing services rely on the gender of an individual, and also in forensic identification, the gender information provides the feasibility for easy and quick investigation. Objective: The paper primarily focused on the gender based identification problem and culminate a robust gender based recognition system with the higher accuracy rate. We attempted to perceive the gender of an individual through the multimodal biometric system by integrating the three prominent biometric traits namely: fingerprint, palm-print and hand in a specific manner. The proposed multimodal biometric for gender recognition system provides a better accuracy rate improvement with the optimal feature set which are generated from available high dimensional features set. Method: Aiming for the objective to reduce the search space, a hybrid meta-heuristic approach GSA-Firefly (GFF) is introduced in this paper. The optimization approach GFF is proposed to retrieve the optimal number of features from the high dimensional features generated by fusing the texture features of all the three considered biometric traits along with the fingerprint minutiae features. Further, the decision tree classifier is used to classify the gender of an individual. Results: The feasibility of the proposed approach is measured with different qualitative performance parameters. In light of achieving the accuracy rate of 99.2%, it shows that its performance comparatively better against other techniques reported in the literature with the different sets of classier. Conclusion: The hybridization technique that effectively integrate meta-heuristic approaches GSA and firefly outperforms other similar approaches with respect to obtaining the optimal features of multimodal biometric for gender based identification system. Further, the novel technique enhance the overall performance of the system by reducing the search space over time and space.

2021 ◽  
Vol 6 (1) ◽  
pp. 27-45
Author(s):  
Martins E. Irhebhude ◽  
Adeola O. Kolawole ◽  
Hauwa K. Goma

Gender recognition has been seen as an interesting research area that plays important roles in many fields of study. Studies from MIT and Microsoft clearly showed that the female gender was poorly recognized especially among dark-skinned nationals. The focus of this paper is to present a technique that categorise gender among dark-skinned people. The classification was done using SVM on sets of images gathered locally and publicly. Analysis includes; face detection using Viola-Jones algorithm, extraction of Histogram of Oriented Gradient and Rotation Invariant LBP (RILBP) features and trained with SVM classifier. PCA was performed on both the HOG and RILBP descriptors to extract high dimensional features. Various success rates were recorded, however, PCA on RILBP performed best with an accuracy of 99.6% and 99.8% respectively on the public and local datasets. This system will be of immense benefit in application areas like social interaction and targeted advertisement.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiren Wang ◽  
Mashari Alangari ◽  
Joshua Hihath ◽  
Arindam K. Das ◽  
M. P. Anantram

Abstract Background The all-electronic Single Molecule Break Junction (SMBJ) method is an emerging alternative to traditional polymerase chain reaction (PCR) techniques for genetic sequencing and identification. Existing work indicates that the current spectra recorded from SMBJ experimentations contain unique signatures to identify known sequences from a dataset. However, the spectra are typically extremely noisy due to the stochastic and complex interactions between the substrate, sample, environment, and the measuring system, necessitating hundreds or thousands of experimentations to obtain reliable and accurate results. Results This article presents a DNA sequence identification system based on the current spectra of ten short strand sequences, including a pair that differs by a single mismatch. By employing a gradient boosted tree classifier model trained on conductance histograms, we demonstrate that extremely high accuracy, ranging from approximately 96 % for molecules differing by a single mismatch to 99.5 % otherwise, is possible. Further, such accuracy metrics are achievable in near real-time with just twenty or thirty SMBJ measurements instead of hundreds or thousands. We also demonstrate that a tandem classifier architecture, where the first stage is a multiclass classifier and the second stage is a binary classifier, can be employed to boost the single mismatched pair’s identification accuracy to 99.5 %. Conclusions A monolithic classifier, or more generally, a multistage classifier with model specific parameters that depend on experimental current spectra can be used to successfully identify DNA strands.


2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Muchun Su ◽  
Diana Wahyu Hayati ◽  
Shaowu Tseng ◽  
Jiehhaur Chen ◽  
Hsihsien Wei

Health care for independently living elders is more important than ever. Automatic recognition of their Activities of Daily Living (ADL) is the first step to solving the health care issues faced by seniors in an efficient way. The paper describes a Deep Neural Network (DNN)-based recognition system aimed at facilitating smart care, which combines ADL recognition, image/video processing, movement calculation, and DNN. An algorithm is developed for processing skeletal data, filtering noise, and pattern recognition for identification of the 10 most common ADL including standing, bending, squatting, sitting, eating, hand holding, hand raising, sitting plus drinking, standing plus drinking, and falling. The evaluation results show that this DNN-based system is suitable method for dealing with ADL recognition with an accuracy rate of over 95%. The findings support the feasibility of this system that is efficient enough for both practical and academic applications.


Author(s):  
Kawthar AlDhlan

<p class="0abstract">This paper presents a gender identification system to be used for call forwarding in health related communications. The system listens to the caller then using speech synthesis, image processing, and linear support vector machine SVM identifies either he or she is a male or a female. This solution is imperative in a conservative country such as the Kingdom of Saudi Arabia in order to forward the call to a male or female practitioner. The originality of the approach is that no transcription is used to learn SVM models. To identify the gender of the caller, the trained SVM model of the reference pieces are compared to transcripts of the audio frequency record and are using the Levenshtein distance. For the identification of gender, we obtain an accuracy rate of 94% on a test flow containing 449 pieces of speech clips.</p>


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Author(s):  
Victor Oduguwa ◽  
Rajkumar Roy ◽  
Didier Farrugia

Most of the algorithmic engineering design optimisation approaches reported in the literature aims to find the best set of solutions within a quantitative (QT) search space of the given problem while ignoring related qualitative (QL) issues. These QL issues can be very important and by ignoring them in the optimisation search, can have expensive consequences especially for real world problems. This paper presents a new integrated design optimisation approach for QT and QL search space. The proposed solution approach is based on design of experiment methods and fuzzy logic principles for building the required QL models, and evolutionary multi-objective optimisation technique for solving the design problem. The proposed technique was applied to a two objectives rod rolling problem. The results obtained demonstrate that the proposed solution approach can be used to solve real world problems taking into account the related QL evaluation of the design problem.


2022 ◽  
Vol 12 (2) ◽  
pp. 853
Author(s):  
Cheng-Jian Lin ◽  
Yu-Cheng Liu ◽  
Chin-Ling Lee

In this study, an automatic receipt recognition system (ARRS) is developed. First, a receipt is scanned for conversion into a high-resolution image. Receipt characters are automatically placed into two categories according to the receipt characteristics: printed and handwritten characters. Images of receipts with these characters are preprocessed separately. For handwritten characters, template matching and the fixed features of the receipts are used for text positioning, and projection is applied for character segmentation. Finally, a convolutional neural network is used for character recognition. For printed characters, a modified You Only Look Once (version 4) model (YOLOv4-s) executes precise text positioning and character recognition. The proposed YOLOv4-s model reduces downsampling, thereby enhancing small-object recognition. Finally, the system produces recognition results in a tax declaration format, which can upload to a tax declaration system. Experimental results revealed that the recognition accuracy of the proposed system was 80.93% for handwritten characters. Moreover, the YOLOv4-s model had a 99.39% accuracy rate for printed characters; only 33 characters were misjudged. The recognition accuracy of the YOLOv4-s model was higher than that of the traditional YOLOv4 model by 20.57%. Therefore, the proposed ARRS can considerably improve the efficiency of tax declaration, reduce labor costs, and simplify operating procedures.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
S. Shanawaz Basha ◽  
N. Musrat Sultana

Biometrics refers to the automatic recognition of individuals based on their physiological and/or behavioral characteristics, such as faces, finger prints, iris, and gait. In this paper, we focus on the application of finger print recognition system. The spectral minutiae fingerprint recognition is a method to represent a minutiae set as a fixedlength feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. Based on the spectral minutiae features, this paper introduces two feature reduction algorithms: the Column Principal Component Analysis and the Line Discrete Fourier Transform feature reductions, which can efficiently compress the template size with a reduction rate of 94%.With reduced features, we can also achieve a fast minutiae-based matching algorithm. This paper presents the performance of the spectral minutiae fingerprint recognition system, this fast operation renders our system suitable for a large-scale fingerprint identification system, thus significantly reducing the time to perform matching, especially in systems like, police patrolling, airports etc,. The spectral minutiae representation system tends to significantly reduce the false acceptance rate with a marginal increase in the false rejection rate.


Author(s):  
El mehdi Cherrat ◽  
Rachid Alaoui ◽  
Hassane Bouzahir

<p>In this paper, we present a multimodal biometric recognition system that combines fingerprint, fingervein and face images based on cascade advanced and decision level fusion. First, in fingerprint recognition system, the images are enhanced using gabor filter, binarized and passed to thinning method. Then, the minutiae points are extracted to identify that an individual is genuine or impostor. In fingervein recognition system, image processing is required using Linear Regression Line, Canny and local histogram equalization technique to improve better the quality of images. Next, the features are obtained using Histogram of Oriented Gradient (HOG). Moreover, the Convolutional Neural Networks (CNN) and the Local Binary Pattern (LBP) are applied to detect and extract the features of the face images, respectively. In addition, we proposed three different modes in our work. At the first, the person is identified when the recognition system of one single biometric modality is matched. At the second, the fusion is achieved at cascade decision level method based on AND rule when the recognition system of both biometric traits is validated. At the last mode, the fusion is accomplished at decision level method based on AND rule using three types of biometric. The simulation results have demonstrated that the proposed fusion algorithm increases the accuracy to 99,43% than the other system based on unimodal or bimodal characteristics.</p>


Sign in / Sign up

Export Citation Format

Share Document